Due date: September 24th.

EconS 301 - Excel assignment 1
Budget Constraints, Utility Functions, and Optimal Choice

Instructions: You can work in groups of up to four students. Each group can submit a single assignment. Please email the Excel file with your answers (using one sheet per question 1-3) to TA Casey Bolt at casey.bolt@wsu.edu before September 24th at noon. In your email, please include the name of all students contributing to the assignment.

1. A) Use Excel to create a chart of a budget constraint that is based on the following information: Income (I) = 100, Price of good 2 \((p_2) = \$3/\text{unit} \), and Price of good 1 \((p_1) = \$2/\text{unit} \). Put good 2 on the y axis and good 1 on the x axis.

 B) What combination of shocks (i.e. changes in income and/or prices) could make the new budget line be completely inside and steeper than the initial budget line. Create a new chart to show the changes and explain.

 C) What happens to the budget line if all prices and income doubles from your budget constraint in part c)? Create a new chart to show the changes and explain.

2. The utility function, \(U = x - 0.03x^2 + y \), has a quasi-linear functional form. Use this utility function and Excel to answer the questions that follow.

 A) Compute the value of the utility function at bundle A, where \(x = 10 \) and \(y = 1 \). Show your work.

 B) Working with bundle A, find the average marginal utility of \(x \) as \(x \) rises from \(x = 10 \) to \(x = 20 \). Show your work.

 C) Find the marginal utility of \(x \) for bundle A where \(x = 10 \) and \(y = 1 \) (using derivatives). Show your work.

 D) Why do the two methods of determining the MUx yield different answers?

3. The utility function, \(U = 10x - 0.1x^2 + y \), has a quasi-linear functional form. Use this utility function and Excel to answer the questions that follow.

 A) Suppose the budget line is \(100 = 2x + 3y \). Use excel to find the optimal solution. Show your work.

 B) Suppose the consumer considers the bundle \((0, 33.33)\), buying no \(x \) and spending all income on \(y \). Use the MRS compared to the price ratios logic to explain what the consumer will do and why.
C) Consider the parameters in the utility function, a, b, c, and d \((U = ax - bx^c + dy)\). If a increases, what happens to the optimal consumption of \(x^*\)? Explain how you arrived at your answer.