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Abstract 
 
A method for nesting, estimating and testing for the rank and functional form of the income terms in an incomplete system of 
aggregable and integrable demand equations is derived. Information theory is applied to the problem of inferring the U.S. 
income distribution using annual time series data on quintile and top five percentile income ranges and intra-quintile and top 
five percentile mean incomes. Estimates for the year-to-year income distribution are combined with annual time series data on 
the U.S. consumption of and retail prices for twenty-one food items to estimate the rank and functional form of the income 
terms in U.S. food demand over the period 1919-95, excluding 1942-46 to allow for the structural impacts of World War II. 
 
 
1. Introduction  
 
Following Muellbauer’s (1975) extension of the Gorman 
polar form to a nonlinear function of income to obtain the 
price independent generalized linear (PIGL) and price inde-
pendent generalized logarithmic (PIGLOG) functional 
forms, much progress has been made in the past 25 years on 
aggregation theory in consumption. The Almost Ideal De-
mand System (AIDS) of Deaton and Muellbauer (1980) 
implements Muellbauer’s results to produce demands with 
budget shares expressed as functions of linear and quadratic 
terms in the logarithm of prices and a linear term in the loga-
rithm of income. The AIDS and its linear approximation 
(LA-AIDS) have been linchpins in applied demand analysis 
since their introduction. Most applications of the AIDS and 
LA-AIDS either assume separability and estimate a com-
plete system of demands for a disaggregate group of com-
modities as functions of prices for the goods in the group 
and total expenditure on the group, or estimate a complete 
system of demands with highly aggregated commodities as 
functions of aggregate price indices and total consumption 
expenditures (hereafter, income, which we denote by m). 

Shortly after the article by Deaton and Muellbauer, in a 
remarkable and elegant contribution to the festschrift to Sir 
Richard Stone, Gorman (1981) derived the set of functional 
forms for demand models that can be written in terms of any 
additive set of functions of income. Any complete system of 
demand equations in the class of “Gorman Engel curves” 
must satisfy two properties in addition to homogeneity, add-
ing up and symmetry. First, if the number of independent 
functions of income is at least three, then the functions all 
must be either (a) polynomials in income, (b) polynomials in 
some non-integer power of income, (c) polynomials in the 
natural logarithm of income, or (d) a series of sine and co-
sine functions of the natural logarithm of income. Second, 
the number of “linearly independent” functions of income in 
this class of demand systems at most equals three, where 
linear independence refers to the rank of the matrix of price 
functions that premultiply the income functions. One impor-
tant implication is that theoretically consistent demand ag-

gregation in models that have full column rank for this ma-
trix requires three summary statistics from the distribution of 
income to estimate the demand parameters with aggregate 
data. 

Gorman (1981) also conjectured that second-order 
polynomials are the most general non-degenerate cases of 
demand systems that have full rank three. Pursuing this con-
jecture by exploiting the methods of van Daal and Merkies 
(1989), Lewbell (1990) was able to show that all full rank 
three generalizations of Muellbauer’s PIGL and PIGLOG 
demand models are quadratic forms analogous to the quad-
ratic expenditure system (QES) developed by Howe, Pollak 
and Wales (1979) and perfected by van Daal and Merkies 
(1989). Lewbell (1990) also derived a full rank three trigo-
nometric model. 

All of the above results on the rank of the coefficient 
matrix and the functional form of the income terms in the 
class of Gorman Engel curve demand models require the 
adding up property of a complete demand system. However, 
often we are interested in the demands for a subset of goods 
that make up only part of the consumption budget. In such a 
case, separability is a strong assumption, and it is undesir-
able to impose strong restrictions without good reason or 
prior evidence. Without separability, there is little reason to 
impose the same functional form on the demand equations 
for the goods of interest and all of the other goods for which 
we have little or no price or quantity information. This im-
plies that the above results cannot be applied directly to in-
complete demand systems.  

In an ambitious paper, Gorman (1965; 1995) considered 
the structure of the demands for groups of goods in which 
each group’s total expenditure is a function of income and a 
set of aggregate price indices for each group, and derived 
the restrictions on the individual demand equations and the 
properties of the indirect utility function under this set of 
restrictions. Independently and more recently, but along a 
similar line of thought, Epstein (1982), LaFrance (1985) and 
LaFrance and Hanemann (1989) developed a theory for the 
weak integrability of the demands for a single proper subset 
of all goods that does not exhaust the consumer’s budget, 
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regardless of the number of prices that enter the demand 
equations. The conditions for weak integrability of an in-
complete demand system are that the demands are positive 
valued, 0° homogeneous in all prices and income, the budget 
restriction takes the form of a strict inequality (not all of 
income is exhausted by the subset of goods under study), 
and the submatrix of Slutsky substitution terms associated 
with this subset of demands is symmetric and negative 
semidefinite. These conditions exhaust the properties im-
plied by consumer theory for any proper subset of all goods 
and are necessary and sufficient for the recovery of the con-
ditional preference functions (both direct and indirect) for 
those goods, with prices of all other goods acting as condi-
tioning variables (LaFrance (1985); LaFrance and Hane-
mann (1989)). Inter alia, the set of incomplete demand 
models that satisfy weak integrability is much richer than the 
corresponding set of integrable complete demand systems. 

This paper exploits the richness of the set of weakly in-
tegrable demand models to extend aggregation in nonlinear 
functions of income to incomplete demand systems for the 
PIGL and PIGLOG members of Gorman Engel curves. 
These extensions permit us to develop a method to nest 
weakly integrable LA-AIDS, AIDS, quadratic AIDS 
(QAIDS), quadratic PIGL (QPIGL), and extended QES1 
models to simultaneously test for and estimate both the rank 
and functional form of the income terms in aggregable in-
complete demand systems. 

As noted above, a full rank three Gorman Engel curve 
demand model requires three summary statistics from the 
income distribution, e.g., for a QPIGL model in expenditure 
form we need the cross-sectional means of 1

hm −κ , hm , and 
1
hm +κ , where hm  is the income level of family h, h = 1, ..., 

H, say, and κ is the PIGL coefficient on income, while for a 
QAIDS model we need the means of hm , ln( )h hm m , and 

2[ln( )]h hm m . To calculate these means, we need information 

on the distribution of income. The U.S. Bureau of the Cen-
sus annually publishes the quintile ranges, intra-quintile 
means, top five-percentile lower bound for income, and the 
mean income within the top five-percentile range for all U.S. 
families. We use Bayesian methods to obtain annual infor-
mation theoretic density functions that satisfy each of these 
percentile and conditional mean conditions for the period 
1910-1999. These maximum entropy densities and the re-
sulting food demand estimates are compared with those ob-
tained from a truncated three-parameter lognormal distribu-
tion and a piecewise uniform distribution for each year. 

The income distribution estimates are combined with 
aggregate annual time series data on per family U.S. food 
expenditures for 21 individual food items over the period 
1919-1995, excluding 1942-1946 to account for the struc-
tural impacts of World War II.2 In addition to annual meas-
ures of food expenditures, prices, and the income distribu-
tion, we incorporate measures for the distribution of the U.S. 
population by age and the ethnicity of the U.S. population in 
the incomplete demand model’s specification. The results of 
the empirical application strongly suggest that a full rank 

three model is essential, and that the QAIDS is strongly re-
jected in favor of an extended QES. 

The rest of the paper is organized as follows. The next 
section extends the aggregation results of Gorman and oth-
ers to incomplete demand systems that can be written in a 
PIGL/PIGLOG form. The third section describes the esti-
mates of the U.S. income distribution. Section 4 presents a 
summary and discussion of a subset of the empirical results, 
focusing primarily on the rank of the demand model and the 
functional form of the income terms. The final section sum-
marizes the findings of the paper and discusses possible 
limitations of the analysis and possible directions for further 
research. Additional detailed derivations, discussions, and 
proofs of our main results are contained in an expanded pa-
per that is available from the authors upon request. 
 
 
2. Nesting LA-AIDS, AIDS and QAIDS within a QPIGL-
IDS 
 
In the two decades since its introduction by Deaton and 
Muellbauer, the AIDS has been widely used in demand 
analysis. The vast majority of empirical applications follows 
Deaton and Muellbauer’s suggestion and replaces the trans-
log price index that deflates income with Stone’s index, 
which generates the LA-AIDS. Although Deaton and Muell-
bauer (1980: 317-320) cautioned against and avoided the 
practice, most empirical applications of the LA-AIDS in-
clude tests for and the imposition of an approximate version 
of Slutsky symmetry by restricting the matrix of logarithmic 
price coefficients to be symmetric. Important examples in-
clude Anderson and Blundell (1983), Buse (1998), Moschini 
(1995), Moschini and Meilke (1989), and Pashardes 
(1993).3 In this section, we derive a simple method for nest-
ing the weakly integrable LA-AIDS model within a general 
class of QPIGL demand models. 

Let p be the n-vector of market prices for goods, let u 
be the utility index, let ( , )e up  be the consumer’s expendi-

ture function, and let w be the n-vector of budget shares. In 
this study, we nest the LA-AIDS, AIDS, LES, and PIGL 
demand models within a general rank three quadratic PIGL 
incomplete demand system (QPIGL-IDS). The quasi-
indirect utility function (Hausman (1981); LaFrance (1985); 
LaFrance and Hanemann (1989)) for this model can be writ-
ten in a form that is consistent with the QES originally de-
veloped in Howe, Pollak and Wales (1979), 

(1) ( , )m =pϕ  

( )
1

0 2

1
( )

( ) ( ) ( ) ( )
e

m
′  ′− + ′ ′− − −  
pp

p p Bp
λλ

κ α λ λ λ
γδδ

αα
. 

Applying Roy’s identity to (1) generates a QPIGL-IDS in 
budget share form as 
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(2) { ( )m−= +w P Bpκ λ λαα
 

 1
0

2
( ) ( ) ( ) ( )m ′ ′+ − − − p p Bpκ α λ λ λγγ αα  

 [ ] }21
0

2
( ) ( ) ( ) ( ) ( )m ′ ′ ′+ + − − − I p p p Bpλ κ α λ λ λγγ δδ αα . 

Assuming that α and B do not completely vanish simultane-
ously, it follows that: (a) γ ≠ 0, δ ≠ 0 is necessary and suffi-
cient for a full rank three QPIGL-IDS; (b) γ ≠ 0, δ = 0 is 
necessary and sufficient for a full rank two, non-homothetic 
PIGL-IDS; (c) γ = 0, δ ≠ 0 is necessary and sufficient for a 
full rank two QPIGL-IDS that excludes the linear term; and 
(d) γ = δ = 0 is necessary and sufficient for a homothetic 
PIGL-IDS. Thus, we obtain a rich class of models that per-
mits nesting, testing and estimating the rank and functional 
form of the income aggregation terms in incomplete demand 
systems. 
 
 
3. Estimating the U.S. Income Distribution 
 
When a demand model is nonlinear in income, the demand 
equations do not aggregate directly across individual deci-
sion units to average (per capita or per family) income at the 
market level. The advantage of the Gorman class of Engel 
curves is that, when information on the income distribution 
across economic units is available, only a small number of 
summary statistics from this distribution are required to ob-
tain a theoretically consistent, aggregable demand model. 
Indeed, all full rank three Gorman Engel curve demand 
models require three summary statistics from the income 
distribution, e.g., a QPIGL requires the cross-sectional 
means of 1

hm −κ , hm , and 1
hm +κ . To calculate these means, 

however, we need information on the distribution of income.  
The U.S. Bureau of the Census publishes annually quin-

tile ranges, intra-quintile means, the top five-percentile 
lower bound for income, and the mean income within the 
top five-percentile range for all U.S. families. These data are 
currently available for 1947-1998 on the U.S. Bureau of the 
Census World Wide Web site, and for the years 1929, 
1935/36, 1941, 1944 and 1946 from the Census Bureau’s 
historical statistics (U.S. Department of Commerce, 1972). 
Several issues arise regarding the use of these data to esti-
mate the U.S. income distribution. First and perhaps fore-
most is an appropriate methodology for obtaining a reason-
able density function given the probability ranges and intra-
range means. In this paper, we consider three possibilities, 
depicted in figure 1 for 1997, which are developed and ex-
plained in this section. 
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Figure 1. U.S. Income Distribution, 1997.
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A simple, naive and uninformative approach is to con-
struct a sequence of piecewise uniform densities on each of 
the first four quintile ranges, the 85-95 percentile range, and 
the top five percentile range.4 However, these piecewise 
uniform densities generally do not satisfy the intra-quintile 
and top five percentile mean conditions. A more informative 
solution is to construct a pair of uniform densities on each 
range, separated at the intra-range mean, and with total 
probabilities that sum to .20, .15, or .05, as appropriate. Let-

ting [Ai-1, Ai) denote the i th income range, µi the i th intra-range 

mean, and pi the proportion of the total number of U.S. fami-
lies whose incomes that fall within this range, we calculate a 

piecewise uniform density on [Ai-1, Ai) that satisfies 

(3) 
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This density is illustrated in figure 1 for 1997 by the series 
of horizontal line segments. 

The piecewise uniform density is ad hoc and discon-
tinuous at eleven points5. We have a fixed (and small) num-
ber of observations in each year on quintile limits, intra-
quintile means, and the top five percentile lower limit and 
mean, so we cannot appeal to properties like consistency. 
Therefore, alternative estimators warrant consideration. Two 
approaches are considered here. One is based on the princi-
ple of maximum entropy and information theory. This den-
sity is well-known to possess several desirable properties 
(Zellner 1988). This approach generates a piecewise expo-
nential density that is smooth and monotone within each 
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income range and satisfies the probability and intra-range 
mean conditions exactly, but is discontinuous at the bound-
ary between each pair of contiguous income ranges, 

(4) 
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with pi = 0.20, i = 1…4, p5 = 0.15, and p6 = 0.05, and the 
Lagrange multipliers for the mean constraints satisfy 

(5) 1( )

1

1 ( )
0, 5

1 ( )
i i i i i i

i i i

e i−−

−

 + −− = ≤ − − 
A A A

A

λ λ µ
λ µ

, 

 6 6 51 ( )= − Aλ µ . 

For 1997, this density is depicted in figure 1 by the series of 
piecewise exponential curves marked with solid black cir-
cles.  

The second density is a parametric, truncated three-
parameter lognormal density. This density is smooth every-
where and has a general shape that is similar to the piece-
wise uniform and maximum entropy densities, but does not 
satisfy either the probability or mean conditions exactly in 
any range of income. Suppose that [ ]ln( )z x= − −θ µ σ  has 

a standard normal distribution, with α, σ, and θ parameters 
and x > θ . Define the standardized zero income limit by 

( )0 ln( )z = − −θ µ σ  and denote the standard normal cdf at 

z0 by 0

0( ) ( )zz z dz−∞Φ = ∫ ϕ , where 
2 / 2( ) (1 2 ) zz e−=ϕ π  is the 

standard normal pdf. Then the truncated three-parameter 
log-normal density for 0x ≥  is defined by 

(6) 
0

1
( | 0; , , )

2 ( )(1 ( ))
f x x

x z
≥ =

− − Φ
µ σ θ

πσ θ
 

 [ ]2

2

1
exp ln( )

2
x

 × − − − 
 

θ µ
σ

. 

For 1997, this density is depicted in figure 1 by the smooth 
curve with empty circles. 

Data for U.S. food consumption and retail prices, as 
well as additional variables that are described in the next 
section, have been obtained from LaFrance (1999a) for the 
years 1918–1995. However, observations on the Census 
Bureau’s summary data for the income distribution are 
available for 1929, 1935/36, 1941 and 1946–98. One issue 
that arises in using this data in an aggregate U.S. food de-
mand model, then, centers on predicting or extrapolating this 
income data for the years 1918–1928, 1930–40, 1942–43, 
and 1945. We forecast these missing observations utilizing 
data on per capita disposable personal income and the un-
employment rate as predictors and following a recursive 
forecasting procedure. The natural logarithms of the first 
quintile upper limit and conditional mean income are pre-

dicted with a constant term, the log of per capita disposable 
income, the squared log of per capita disposable income, 
and the unemployment rate. Each successive income limit 
and condition mean are then recursively predicted with ordi-
nary least squares using a constant term and first- second- 
and third-order powers of the log of the closest smaller limit 
or conditional mean, as appropriate, as regressors. 
 
 
4. Estimating a Nested QPIGL-IDS for Food Demand 
 
The system of empirical nested QPIGL-IDS demand equa-
tions that we estimate for U.S. food consumption for the 
years 1918–1995, excluding 1942–1946, can be written in 
deflated expenditure form as 

(7) {1 ( )t t t t tm −= +e P ùV %S
κ λ λ  

 1

2
( ) ( ) ( ) ( )t t t tm ′ ′+ − − p ùV S %Sκ λ λ λγ  

 [ ] }21

2
( ) ( ) ( ) ( ) ( )t t t t t tm ′ ′ ′+ + − − I p p As p Bpλ κ λ λ λγγ δδ  

 t+ εε , t = 1, …, T, 

where et = [p1tq1t … pntqnt]′ is the n-vector of deflated per 
family annual expenditures on individual food items, st is a 
vector that includes a constant, the mean, variance and 
skewness of the U.S. population’s age distribution, the pro-
portion of the U.S. population that is Black and the propor-
tion of the population that is neither Black nor White, and εt 
is an n-vector of mean zero, identically distributed error 
terms. We specify the empirical model in expenditure form 
to keep all income terms on the right-hand side so that the 
mean values of all of the appropriate transformations of in-
come are properly calculated across all U.S. families during 
the econometric estimation of the demand parameters. 

Estimation of the model’s parameters requires, for given 
κ ∈ (0, 1], numerical integration to evaluate the expected 
values of the three powers of income at each year in the 
sample period, where the expectation is taken over that 
year’s estimated income distribution. To accomplish this, we 
transform the positive half line into the unit interval [0, 1) 
through a change of variables to 4 410 /(1 10 | |)y x x− −= +  

and use Simpson’s rule on a grid over the unit interval.  
We used two-step nonlinear seemingly unrelated regres-

sions equations (NLSURE) estimation methods, combined 
with a one dimensional search over the income term’s Box-
Cox parameter κ. Only one iteration on the residual covari-
ance matrix was calculated to avoid numerically over fitting 
one or more equations, which can occur with iterative 
NLSURE in large, highly parameterized demand models 
such as this.6 A search over κ was used to incorporate the 
numerical integrations required to generate the aggregate 
income variables, which in turn depend upon the parameter 
κ. Symmetry of the coefficient matrix B is maintained 
throughout the estimation process in order to reduce the 
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dimension of the parameter space from 527 to 317 estimated 
parameters. The optimal first round value for κ was found to 
be 1.00 for the truncated three-parameter lognormal 
(T3PLN) density, 1.03 for the piecewise exponential, and 
0.97 for the piecewise uniform income distribution. Con-
versely, the optimal values for κ obtained in the second it-
eration of the NLSURE procedure are 1.03, 1.00, and 0.98 
for the T3PLN, piecewise exponential, and piecewise uni-
form income distributions, respectively.  

QAIDS-IDS is strongly rejected in favor of an extended 
QES-IDS for this data set, for both income distribution esti-
mates, and at both stages of the NLSURE estimation proc-
ess. The resulting estimates for the first- and second-order 
income coefficients, γ and δ, respectively, as well as the 
optimal values for the Box-Cox parameters, κ and λ, are 
statistically similar across specifications of the income dis-
tribution.  

Table 1 presents the individual equation summary sta-
tistics for the T3PLN income distribution. Results for the 
other income distribution functional forms were similar, and 
are not reported here.  
 
Table 1. Equation Summary Statistics, T3PLN. 

  Durbin- 
Equation R2 Watson 
Milk & Cream .9975 1.935 
Butter .9971 1.559 
Cheese .9977 1.353 
Frozen Dairy .9661 1.333 
Canned & Powder Milk .9648 1.287 
Beef & Veal .9741 1.280 
Pork .9266 1.315 
Other Red Meat .9569 1.455 
Fish .9899 1.665 
Poultry .9628 1.098 
Fresh Citrus Fruit .8474 2.084 
Fresh Noncitrus Fruit .9668 2.628 
Fresh Vegetables .9834 1.790 
Potatoes .9671 1.869 
Processed Fruit .9869 1.829 
Processed Vegetables .9785 1.554 
Eggs .9747 1.771 
Fats and Oils .9983 1.551 
Cereals and Bakery .9925 1.279 
Sugar .9828 2.145 
Coffee, Tea & Cocoa .9691 1.930 
  
 
Table 2 presents the Box-Cox price coefficient and the first- 
and second-order income coefficients for the T3PLN income 
distributions. The standard errors reported in this table are 
conditional on the estimate of κ due to the generated income 
variables nature of the demand model’s parameter estimates. 
This implies that these standard errors should be interpreted 
with caution. 
 
 

Table 2. Income Coefficients, T3PLN: ̂ = 1.03κ  

 Conditional 
Parameter Estimate Standard Error 
 λ .853915 .033923 
 γ1 -.024642 .013093 
 γ2 -.258821⋅10-2 .206153⋅10-2 

 γ3 -.911698⋅10-3 .221715⋅10-2 
 γ4 .017188 .500290⋅10-2 
 γ5 .301518⋅10-2 .592252⋅10-2 
 γ6 .022654 .010523 
 γ7 .010451 .995331⋅10-2 
 γ8 -.313399⋅10-2 .371416⋅10-2 
 γ9 .339135⋅10-2 .209848⋅10-2 
 γ10 -.93449810-3 .425920⋅10-2 
 γ11 -.968060⋅10-3 .997693⋅10-2 
 γ12 .048544 .015135 
 γ13 .768783⋅10-2 .772512⋅10-2 
 γ14 -.020795 .020258 
 γ15 -.550843⋅10-2 .685728⋅10-2 
 γ16 .026156 .743900⋅10-2 
 γ17 .011163 .439605⋅10-2 
 γ18 .615151⋅10-2 .353595⋅10-2 
 γ19 .021258 .013952 
 γ20 .019811 .939334⋅10-2 
 γ21 .254267⋅10-2 .252764⋅10-2 
 δ1 .112092⋅10-5 .486111⋅10-6 
 δ2 -.187811⋅10-7 .862305⋅10-7 
 δ3 .866507⋅10-7 .802000⋅10-7 
 δ4 -.463795⋅10-6 .203328⋅10-6 
 δ5 -.726773⋅10-9 .226065⋅10-6 
 δ6 -.518846⋅10-6 .405252⋅10-6 
 δ7 -.316928⋅10-6 .401569⋅10-6 
 δ8 .137460⋅10-6 .136176⋅10-6 
 δ9 .720693⋅10-8 .714625⋅10-7 
 δ10 .250661⋅10-6 .199447⋅10-6 
 δ11 .650096⋅10-7 .391085⋅10-6 
 δ12 -.193640⋅10-5 .670224⋅10-6 
 δ13 .496807⋅10-8 .294807⋅10-6 
 δ14 .959843⋅10-6 .731403⋅10-6 
 δ15 .510022⋅10-6 .285776⋅10-6 
 δ16 -.445306⋅10-6 .328907⋅10-6 
 δ17 -.366017⋅10-6 .187846⋅10-6 
 δ18 -.159808⋅10-6 .174505⋅10-6 
 δ19 -.525896⋅10-6 .569711⋅10-6 
 δ20 -.288873⋅10-6 .386350⋅10-6 
 δ21 -.138823⋅10-7 .982542⋅10-7 

  
 
 

However, it is possible to calculate consistent test statis-
tics for the rank of the demand model using a Wald test. For 
the T3PLN version, we obtain the following: 
 

H0: γ = 0  
H1: γ ≠ 0 χ2(21) = 114.89 
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H0: δ = 0 
H1: δ ≠ 0 χ2(21) = 59.99 
H0: γ = δ= 0 
H1: γ ≠ 0 or δ ≠ 0 χ2(42) = 349.18 

 
Similar results were obtained for the other two distributions, 
and in all cases we are lead to reject all three versions of the 
null hypothesis at any standard level of significance, and 
therefore conclude that the full rank three QES-IDS model is 
a significant improvement over all of the more restrictive 
versions. We also conclude that any version of integrable 
AIDS model is significantly inferior to the corresponding 
alternative with the Box-Cox income parameter statistically 
very close to unity. 
 
 
5. Conclusions 
 
This paper presents a method to nest, test and estimate both 
the rank and functional form of the income terms in an in-
complete system of aggregable and integrable demand equa-
tions is derived. Bayesian methods are applied to the prob-
lem of inferring the U.S. income distribution using annual 
time series data on quintile and top five percentile income 
ranges and intra-quintile and top five percentile mean in-
comes. The results obtained with different functional forms 
for the income distribution are compared and contrasted. 
The estimates for the year-to-year income distribution are 
combined with annual time series data on the U.S. consump-
tion of and retail prices for twenty-one food items over the 
period 1919–95, excluding 1942–46 to account for the 
structural impacts of World War II. 

The empirical results suggest that all integrable versions 
of the AIDS model are strongly rejected by this data set, in 
favor of a full rank three extended QES-IDS. This has po-
tentially significant implications for future demand analysis, 
particularly with respect to food consumption using aggre-
gate market-level data sets. For example, in his model of the 
demand for dairy products, Agnew (1998) finds the nonho-
mothetic, integrable rank two AIDS model to be substan-
tially responsible for rejections of the implications of con-
sumer choice theory – both symmetry and curvature – as 
well as a similar result as is reported here regarding the infe-
riority in all statistical respects relative to an extended LES 
model specification. The extreme level of confidence with 
which we reject the AIDS forms here suggests that a similar 
finding is likely. This, of course, must be left for future re-
search. 

The empirical results presented in this paper regarding 
the demand for U.S. food consumption are somewhat limited 
in their scope and interpretation. The primary reason for this 
is the fact that all other parameter estimates are conditional 
on the estimated Box-Cox parameter for the income coeffi-
cient. On the other hand, however, if we were to assume a 
priori  that a QES model is the best specification – which of 
course at this stage of the game is unfair play – then we 
could interpret the remaining parameter estimates in the 

usual manner. It is interesting to note that, given the QES 
specification, the moments required from the income distri-
bution for exact aggregation are precisely the mean and the 
variance. This is an interesting implication of the present 
study in its own right. No attempt is made in the present 
empirical work to test or impose the appropriate curvature 
restrictions necessary for the demand model to be logically 
consistent with weak integrability, and therefore the maxi-
mization hypothesis. The empirical results reported here, as 
a result, should not be use for welfare analysis. 
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Endnotes 
                                                 

1 “Extended QES”indicates that supernumerary income is 
income minus a quadratic form in prices and that there is an 
n×n matrix of price effects in addition to the intercepts in the 
QES demands. 
2 See LaFrance (1999a, 1999b) for empirical evidence for 
the exclusion of World War II and the stability of U.S. food 
demands over this long sample period. The twenty-one food 
items included in the data set can be conveniently grouped 
into four categories: (1) dairy products, including fresh milk 
and cream, butter, cheese, ice cream and frozen yogurt, and 
canned and dried milk; (2) meats, fish and poultry, including 
beef and veal, pork, other red meat, fish, and poultry; (3) 
fruits and vegetables, including fresh citrus fruit, fresh non-
citrus fruit, fresh vegetables, potatoes and sweet potatoes, 
processed fruit, and processed vegetables; and (4) miscella-
neous foods, including fats and oils excluding butter, eggs, 
cereals, sugar and sweeteners, and coffee, tea and cocoa. 
3 However, see Browning and Meghir (1991) for an applica-
tion of estimating the integrable AIDS, using the LA-AIDS 
with a symmetric matrix of log-price coefficients to obtain 
starting values for the nonlinear estimation procedure. 
4 The mean for the 80-95 percentile range is calculated as 

80 100% 95 100%80 95% (.20 .05 ) .15− −−µ = µ − µ . The 85-95 per-

centile range is the interval from the lower limit of the top 
quintile to the lower limit of the top five percentile range, 
while the top five percentile mean is assumed to be the mid-
point of that range for the piecewise uniform densities dis-
cussed in this subsection. 
5 For simplicity, the intra-range mean of the top five percen-
tile group is assumed to be located at the center of that 
range, making the top percentile uniform density continuous 
up to the point x.95 + 2µ.95, which reduces the number of 
discontinuities from twelve to eleven. 
6 See LaFrance (1999b), footnote 12 for a discussion of this 
issue. The crux of the matter is that all of the model parame-
ters, which in the present case total 317, enter each of the 
demand equations, while there are only 76 time series ob-
servations. This creates a numerical possibility for a singular 
estimated covariance matrix when iterative NLSURE is em-
ployed, which generates an unbounded likelihood function. 


