
CHAPTER 4

The Generalized Quadratic Expenditure System

Jeffrey T. LaFrance* and Rulon D. Pope

Abstract

This chapter presents the indirect preferences for all full rank Gorman and
Lewbel demand systems. Each member in this class of demand models is a
generalized quadratic expenditure system (GQES). This representation
allows applied researchers to choose a small number of price indices and a
function of income to specify any exactly aggregable demand system, without
the need to revisit the questions of integrability of the demand equations or
the implied form and structure of indirect preferences. This characterization
also allows for the calculation of exact welfare measures for consumers,
either in the aggregate or for specific classes of individuals, and other
valuations of interest to applied researchers.
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1. Introduction

Specifying the functional form of a system of demand equations is a central
focus of empirical economic modeling. Two approaches to this issue are to
solve the integrability conditions for a chosen set of demand equations to
derive the indirect preference function or to specify the indirect preference
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function directly and then use Roy’s Identity or Hotelling’s Lemma to
generate the demand equations.

The first approach specifies an attractive set of demand equations q(p,m)
where q is an n-vector of consumption goods, p the associated price vector,
and m the income.1 The most common class of demand models of this type
has been the multiplicatively separable and additive form,2

qi ¼
XK

k¼1

aikðpÞhkðmÞ; i ¼ 1; . . . ; n, (1)

where aik : Rn
þþ ! R; hk : Rþþ ! R, 8 i ¼ 1; . . . ; n; 8 k ¼ 1; . . . ;K . An

important strength of this model specification is that it aggregates from
micro- to macro-level data. Given a distribution function of income,
F : Rþ ! ½0; 1�, then we only need K cross-sectional moments,

�hk ¼

Z
hkðmÞdFðmÞ; k ¼ 1; . . . ;K ,

to estimate Eq. (1) with aggregate data.3

Define the n�K matrix of price functions A(p) ¼ [aik(p)]. The rank of
Eq. (1) is the column rank of A(p), with nXK (Gorman, 1981). Full rank

1 Income is really a nickname for total consumption expenditure.
2 An important literature on this topic includes: Gorman (1953, 1961, 1965, 1981); Pollak

(1969, 1971a, 1971b, 1972); Burt and Brewer (1971); Phlips (1971); Muellbauer (1975, 1976);

Cicchetti et al. (1976); Howe et al. (1979); Deaton and Muellbauer (1980); Jorgenson et al.

(1980, 1981, 1982); Lau (1982); Russell (1983, 1996); Jorgenson and Slesnick (1984, 1987);

Lewbel (1987a, 1988; 1989a, 1989b, 1990, 1991, 2003, 2004); Diewert and Wales (1987,

1988); Blundell (1988); Wales and Woodland (1983); Brown and Walker (1989); van Daal

and Merkies (1989); Jorgenson (1990); Pollak and Wales (1969, 1980, 1992); Jerison (1993);

Russell and Farris (1993, 1998); and Banks et al. (1997). Consistent with this literature, we

focus on smooth demand systems with interior solutions.
3 This property extends to Lau’s (1982) Fundamental Theorem of Exact Aggregation, where a

vector s 2 Rr of demographic or other demand shifters is included in the income functions,

the joint distribution function for (m, s) is F(m, s), and the K cross-sectional moments

required for exact aggregation are

�hk ¼

Z
hkðm; sÞdFðm; sÞ; k ¼ 1; . . . ;K .

The analysis of homogeneity given below can easily be shown to lead to the Gorman class of

functional forms with respect to income. Moreover, 01 homogeneity implies that the {hk}

must be multiplicatively separable between income and demographics, that is,

hkðm; sÞ ¼ gkðmÞ � ‘kðsÞ 8 k ¼ 1; . . . ;K. In other words, 01 homogeneity and Lau’s result

require that the demand equations are of the form,

qi ¼
XK

k¼1

aikðpÞgkðmÞ‘kðsÞ; i ¼ 1; . . . ; n,

with each of the {gk(m)} a member of the Gorman class of functional forms. Hence, all of

the results on rank and functional form in Gorman’s theory of aggregation hold in this

model specification as well.
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systems are important because they are parsimonious. In parsimonious
systems, for any given degree of flexibility in prices and income, the
minimum number of parameters needs to be estimated. As a result, the main
focus in the literature has been on full rank systems. That is, A has rank K.

Assume that the expenditure function, e : Rn
þþ � R! Rþþ; defined by

eðp; uÞ � min
q2Rn

þ

p>q : uðqÞ � u
� �

,

and associated with the demand system (Eq. (1)) exists, is smooth, e 2 C1,
increasing, 11 homogeneous, and concave in p, and increasing in u. One
difficulty with starting with Eq. (1) is the problem of integrability to well-
behaved preferences (Hurwicz and Uzawa, 1971). For this class of models
(hereafter a Gorman system), the demand system must satisfy 01 homo-
geneity, adding up, and symmetry and negative semidefiniteness of the
Slutsky equations,

@2e

@pi@pj
¼
XK

k¼1

@aik
@pj

hk þ
XK

k¼1

aikh
0
k

XK

‘¼1

aj‘h‘

¼
XK

k¼1

@ajk
@pi

hk þ
XK

k¼1

ajkh
0
k

XK

‘¼1

ai‘h‘

¼
@2e

@pj@pi
; 8 iaj.

(2)

Each of these properties leads to restrictions on the number of terms, K, the
admissible functional forms for the income terms, {hk}, the relationships
among the terms in the demand model, and the values of the model’s para-
meters. Except for curvature, the role of each of these properties is discussed
in detail later.4 First, two properties are developed that are essential to the
identification of the model’s parameters during econometric estimation.

2. A unique representation

In this section, we discuss the concept of linear independence of the price
and income functions used throughout this chapter. Let the n�Kmatrix of
price functions be denoted by AðpÞ ¼ ½a1ðpÞ � � � aK ðpÞ� and let the K� 1
vector of income functions be denoted by h(m). For the system of demand

4 However, LaFrance and Pope (2008) discussed and analyzed the local and global

monotonicity and concavity properties of the expenditure function for this class of demand

models. LaFrance et al. (2005, 2006) developed a method to nest aggregable demand models

with empirical results that can be economically regular on an open set that contains the

convex hull of the data. LaFrance (2008) successfully applied this methodology to U.S. food

demand.
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equations to have a unique representation on Rn
þþ � Rþþ, we need two con-

ditions (Gorman, 1981, pp. 358–359; Russell and Farris, 1998, pp. 201–202).
The first condition needed is that the fhkðmÞg

K
k¼1 are linearly independent

with respect to the constants in K-dimensional space. That is, there can
exist no c 2 RK satisfying ca0 and c>hðm1Þ ¼ 0 8 m1 2 N ðmÞ � Rþþ,
where N ðmÞ is an open neighborhood of an arbitrary point in the interior
ofM � Rþþ; the domain of definition for the h(m). If this is not satisfied,
then for any K-vector, d 2 RK , adding the n-vector AðpÞdc>hðmÞ � 0 to the
system of demands does not change it,

q ¼ AðpÞðI þ dc>ÞhðmÞ.

We could therefore choose different d vectors to make the matrix ~AðpÞ �
AðpÞðI þ dc>Þ anything, whereas each such choice is multiplicatively
separable between prices and income. That is, the demand system is
unidentified and meaningless.

The second condition needed is that the column vectors of A(p) are
linearly independent with respect to the K-dimensional constants. For this
to hold, there can be no c 2 RK that satisfies ca0 and Aðp1Þc ¼ 0 8 p1 2
N ðpÞ; where in this case N ðpÞ is an open neighborhood of any point in
the interior of P � Rn

þþ, the domain of definition for the n�K array of
functions A(p). If this property did not hold, then 8 d 2 RK , adding
AðpÞcd>hðmÞ � 0 to the system does not change it,

q ¼ AðpÞðI þ cd>ÞhðmÞ.

We again could choose any K-vector d to make the n-vector ~hðmÞ �
ðI þ cd>ÞhðmÞ anything while maintaining the multiplicatively separable
structure. The demand system would thus again be unidentified and make
little sense. We therefore assume throughout that the dimensions of A and
h are such that a unique representation exists in all cases.

3. The role of symmetry

The symmetry conditions (Eq. (2)) are identical to those discovered by
Sophus Lie (An English translation of Lie’s 1880 monograph, with com-
mentary is contained in Hermann, 1975) in his seminal study of transforma-
tion groups. Subtracting q2e/qpjqpi from q2e/qpiqpj, the Slutsky symmetry
conditions can be rewritten in terms of 1

2
n(n–1) vanishing differences,

0 ¼
XK

k¼1

@aik
@pj
�
@ajk
@pi

 !
hk þ

XK

k¼1

XK

‘¼1

aikaj‘ðh
0
kh‘ � hkh

0
‘Þ; 8 joi ¼ 2; . . . ; n.

(3)

In the double sum on the right-hand side, when k ¼ ‘, the term aik ajk is
multiplied by h0khk � hkh

0
k ¼ 0. On the other hand, when ka‘, then the

term h0kh‘ � hkh
0
‘ appears twice, once multiplied by aikaj‘ and once
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multiplied by �ai‘ajk. Therefore, we can rewrite Eq. (3) again as a linear
system of 1

2
n(n–1) equations in the 1

2
K(K–1) terms, h0kh‘ � hkh

0
‘; k4‘;

0 ¼
XK

k¼1

@aik
@pj
�
@ajk
@pi

 !
hk

þ
XK

k¼2

Xk�1

‘¼1

ðaikaj‘ � ajkai‘Þðh
0
kh‘ � hkh

0
‘Þ; joi ¼ 2; . . . ; n.

(4)

Now define the matrices

B ¼

a22a11 � a12a21 � � � a2ka1‘ � a1ka2‘ � � � a2Ka1;K�1 � a1Ka2;K�1

..

. ..
. ..

. ..
. ..

.

ai2aj1 � aj2ai1 � � � aikaj‘ � ajkai‘ � � � aiKaj;K�1 � ajKai;K�1

..

. ..
. ..

. ..
. ..

.

an2an�1;1 � an�1;2an1 � � � ankan�1;‘ � an�1;kan;‘ � � � anKan�1;K�1 � an�1;Kan;K�1

2
666666664

3
777777775

,

C ¼

@a11
@p2
�
@a21
@p1

� � �
@a1K
@p2
�
@a2K
@p1

..

. ..
. ..

.

@ai1
@pj
�
@aj1
@pi

� � �
@aiK
@pj
�
@ajK
@pi

..

. ..
. ..

.

@an;1
@pn�1

�
@an�1;1
@pn

� � �
@an;K
@pn�1

�
@an�1;K
@pn

2

666666666666664

3

777777777777775

,

and the vector5

~h ¼ h02h1 � h2h
0
1 . . . h0kh‘ � hkh

0
‘ . . . h0KhK�1 � hKh

0
K�1

� �>
.

Note that B is 1
2
n(n�1)� 1

2
K(K�1), C is 1

2
n(n�1)�K, and ~h is 1

2
K(K�1)� 1.

These definitions allow us to rewrite the symmetry conditions (Eq. (4))
compactly in matrix notation as B ~h ¼ Ch:

5 In differential geometry, the terms hkðmÞh
0
‘ðmÞ � h0kðmÞh‘ðmÞ; ka‘; are called Jacoby

brackets. When the differential operator, @/@m is appended to the right of a Jacoby bracket,

the result is the Lie bracket, ½hkðmÞh
0
‘ðmÞ � h0kðmÞh‘ðmÞ�@=@m. The K differential operators,

hkðmÞ@=@m; k ¼ 1; . . . ;K ; forms a finite dimensional system of vector fields on the real

line and the Lie algebra for these vector fields is the linear vector space spanned by the

vector fields. The largest Lie algebra on the real line has rank three. The basis

f@=@m;m@=@m;m2@=@mg spans this vector space. Russell and Farris (1993) is a very useful

introduction to these concepts and their application to Gorman systems. Guillemin and

Pollack (1974), Hydon (2000), Olver (1993), and Spivak (1999) are helpful references on

differential geometry and applications of Lie’s theory to differential equation systems.
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If we premultiply both sides of this system of matrix equations by B>,
then we obtain B>B ~h ¼ B>Ch: The 1

2
K(K�1)� 1

2
K(K�1) matrix B>B is

symmetric and positive semidefinite. Therefore, if B has full column rank,
then the fundamental rank result of Lie (Hermann, 1975) is 1

2K(K�1)rK.
This is equivalent to the condition Kr3 (Hermann, 1975, pp. 143–146). It
also can be shown that the rank of B equals the rank of A (Hermann, 1975,
p. 141). Therefore, since B?B is of order 1

2
K(K�1)� 1

2
K(K�1) and has the

same rank as B, which also equals the rank of A, it follows that Kr3 in a
full rank Gorman system. This establishes that in a full rank system,
symmetry leads to demands of the form,

qi ¼
X3

k¼1

aijðpÞhkðmÞ; i ¼ 1; . . . ; n. (5)

This important insight was originally stated by Russell (1983) and is
explained in detail by Russell and Farris (1993, 1998) and Russell (1996).

A further implication of slutsky symmetry (and symmetry alone;
for a detailed discussion see Section 7) for a full rank demand system
with the multiplicatively separable and additive structure of Goman is that
{h1, h2, h3} in Eq. (5) are related to each other in a fundamental way.
From the theory of Lie transformation groups, any full rank demand
system with this structure reduces to a special case of a system of Ricatti
partial differential equations (Russell, 1983, 1996; Russell and Farris, 1993,
1998),

@y

@p
¼ ~a1ðpÞ þ ~a2ðpÞyþ ~a3ðpÞy

2, (6)

where y ¼ f(e(p, u)) is a smooth and strictly monotonic function of
expenditure and the n� 1 vectors f~akðpÞg are derived from the n� 1 vectors
fakðpÞg in Eq. (1).6 This expression is derived explicitly during the proof of
proposition 3 later.

At this point, however, is it worthwhile to show that all full rank three
extended PIGL systems with f(m) ¼ mk, PIGLOG systems with f(m) ¼
ln m, and quadratic expenditure systems (QES) with f(m) ¼ m, which are
studied by Lewbel (1989a, 1990) and van Daal and Merkies (1989), can be

6 See Jerison (1993) for an example of a reduced rank system that also has the Gorman

structure.
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reduced to the compact form,

@

@p

f ðeðp; uÞÞ � b1ðpÞ
b2ðpÞ

� �
¼ yðb3ðpÞÞ þ

f ðeðp; uÞÞ � b1ðpÞ
b2ðpÞ

� �2
" #

@b3ðpÞ
@p

,

(7)

where f ðmÞ 2 flnm;mkg;b1;b2; b3 : R
n
þþ ! R; y : R! R and b1;b2;b3;

y 2 C1.7 This is algebraically equivalent to Eq. (6) with the following
definitions:

~a1ðpÞ ¼
@b1ðpÞ
@p
þ

1

b2ðpÞ
@b2ðpÞ
@p
þ

b1ðpÞ
2

b2ðpÞ
þ yðb3ðpÞÞb2ðpÞ

� �
@b3ðpÞ
@p

;

~a2ðpÞ ¼ �
2b1ðpÞ
b2ðpÞ

@b3ðpÞ
@p

; and

~a3ðpÞ ¼
1

b2ðpÞ
@b3ðpÞ
@p

.

This establishes a fundamental, poorly known and less well-understood,
relationship among these models. That is, the linear expenditure system
(LES), QES, almost ideal system (AIS; Deaton and Muellbauer, 1980),
quadratic almost ideal system (QAIS; Banks et al., 1997), aggregable
translog (Jorgenson et al., 1980, 1981, 1982; Jorgenson and Slesnick, 1984,
1987; Lewbel, 1989b; Jorgenson, 1990), and most other common empirical
models are all special cases of Eq. (7).

Throughout the discussion here, a bold subscript p denotes a vector of
partial derivatives with respect to prices, we use a consistent set of notation
to replace the various notations employed in the original articles, and we
omit arguments of almost all functions to simplify the notational burden.

In van Daal and Merkies (1989), Eq. (2), group terms in b�12 ,

q ¼ b�12 ðm
2b3p þmb2p � 2mb1b3p þ b21b3p � b1b2pÞ þ b1p þ yb2b3p. (8)

Regroup terms in the parentheses,

q ¼ b�12 ðm� b1Þ
2b3p þ ðm� b1Þb2p

� �
þ b1p þ yb2b3p,

7 This exhausts the set of full rank three nominal income systems with the multiplicatively

separable and additive structure of Gorman and real-valued f(m). LaFrance et al. (2005)

derive Eq. (6) for last the remaining full rank three case, f ðmÞ ¼ mit. The symmetry

arguments of van Daal and Merkies (1989) applied to this case also leads to Eq. (7). A

detailed discussion is presented during the proof of Proposition 3 in Section 7 later.

Although the QES is a special case of the extended PIGL model with k ¼ 1, the complete list

of implications implied by Slutsky symmetry were first derived by van Daal and Merkies

(1989), which fixed an error in the solution for the indirect preferences of the QES in Howe

et al. (1979).
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gather terms in b3p, divide by b2, and isolate the terms involving b3p on the
right,

q� b1p
b2
�
ðm� b1Þb2p

b22
¼

m� b1
b2

� �2

þ y

" #
b3p: (9)

To obtain Eq. (7), note that the left-hand side of Eq. (9) can be written in
terms of the expenditure function as

@

@p

eðp;uÞ � b1ðpÞ
b2ðpÞ

� �
¼
ðq� b1pðpÞÞ

b2ðpÞ
�
ðeðp;uÞ � b1ðpÞÞb2pðpÞ

b2ðpÞ
2

.

In Lewbel (1990), case iv, move tmt�1 to the left-hand side, define
~b2ðpÞ � b2ðpÞ

1=t and ~b1ðpÞ � b1ðpÞ=b2ðpÞ,

tmt�1q ¼ ~b
t
2
~b1p þ ~b

2

1
~b
t
2b3p þ y ~b

t
2b3p þ

t ~b2p
~b2
� 2 ~b1b3p

 !
mt þ

b3p
~b
t
2

m2t.

(10)

Group terms in b3p, divide by ~b
t
2, and isolate the terms involving b3p on the

right,

tmt�1q

~b
t
2

�
tmt ~b2p
~b
tþ1
2

� ~b1p ¼
mt � ~b1 ~b

t
2

~b
t
2

 !2

þ y

2
4

3
5b3p. (11)

The left-hand side can be written in terms of the expenditure function as

@

@p

eðp; uÞt

~b2ðpÞ
t �

~b1ðpÞ

 !
¼

teðp; uÞt�1q
~b2ðpÞ

t �
teðp; uÞt ~b2pðpÞ
~b2ðpÞ

tþ1 � ~b1pðpÞ. (12)

Redefine b1(p) and b2(p) as b1ðpÞ � ~b1ðpÞ ~b2ðpÞ
t and b2ðpÞ � ~b2ðpÞ

t, and
substitute these definitions into Eqs. (11) and (12) to obtain Eq. (7).

In Lewbel (1990), case v, fix a sign error and typographical error
(see Lewbel (1990, p. 297) to see why these minor corrections are needed)
and move 1/m to the left,

q

m
¼

b3p
b2
ðln b1Þ

2
�

b2p
b2

ln b1 þ
b1p
b1
þ yb2b3p

þ
b2p � 2b3p ln b1

b2

� �
lnmþ

b3p
b2
ðlnmÞ2.

(13)
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Group terms in b3p, divide by b2, and isolate the terms involving b3p on the
right,

q

b2m
�

b1p
b1b2
�

lnðm=b1Þb2p
b22

¼
lnðm=b1Þ

b2

� �2

þ y

" #
b3p. (14)

To obtain Eq. (7), write the left-hand side of Eq. (14) in terms of the
expenditure function as

@

@p

ln eðp;uÞ=b1ðpÞ
� �

b2ðpÞ

� �
¼

q

b2ðpÞeðp;uÞ
�

b1pðpÞ
b1ðpÞb2ðpÞ

�
ln eðp;uÞ=b1ðpÞ
� �

b2pðpÞ

b2ðpÞ
2

.

This completes the algebraic derivations that are required to reduce each of
these models to the compact form of Eq. (7). Given this unifying
representation, a change of variables to zðp;uÞ¼ f ðeðp;uÞÞ�b1ðpÞ

� �
=b2ðpÞ,

simplifies Eq. (7) even further to

@zðp;uÞ

@p
¼ yðb3ðpÞÞþzðp;uÞ

2
� �@b3ðpÞ

@p
. (15)

This is useful for characterizing the solutions for the indirect preferences
of these models. We will return to this result, and make extensive use of it,
in Section 7 later.

It is worth emphasizing that Eq. (7) – equivalently, Eq. (15) – follows
purely from symmetry. That is, the argument by van Daal and Merkies
(1989) leading to their Eq. (2) – equivalently, Eq. (8) – hinges only on
symmetry. Also, to obtain his cases iv and v – equivalently, Eqs. (10) and
(13) – Lewbel (1990) appeals directly to the results of van Daal and
Merkies (1989). In fact, any demand system that reduces to Eq. (6) reduces
to Eq. (15). Hence, the solution to this system of Ricatti partial differential
equations recovers the indirect preferences for all models with the
multiplicatively separable and additive structure of Gorman (1981).

4. The role of homogeneity

Gorman (1981) noted that the class of models he analyzed is somewhat less
interesting because of the restrictions due to the appearance of nominal
income in the {hk(m)}. In fact, it is shown in the next section that
symmetry, 01 homogeneity and adding up, and the fact that the demands
are real-valued imply that y ¼ f ðmÞ 2 flnm;mk;mitg in Eq. (6), where
k 2 R, t 2 Rþ, and i ¼

ffiffiffiffiffiffiffi
�1
p

. This is a severe limitation on the admissible
choice of functional form for the income variables in a Gorman system.
Lewbel (1989a) notes in a footnote that the essence of the Gorman (1981)
restrictions on functional form can be derived purely on the basis of 01
homogeneity. It is worthwhile to demonstrate this fact for a single demand
equation.
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Proposition 1. Given the single demand equation with Gorman’s multi-
plicatively separable and additive form, q ¼

PK
k¼1akðpÞhkðmÞ, for K

linearly independent functions of prices and K linearly independent
functions of income; then q is 01 homogeneous in (p, m) only if each
income function is either:

(i) mk; k 2 R;
(ii) mkðlnmÞ j, k 2 R, j 2 f1; . . . ;Kg;
(iii) mk sinðt lnmÞ, mk cosðt lnmÞ, k 2 R, t 2 Rþ, appearing in conjugate

pairs with the same {k, t} in each pair; or
(iv) mkðlnmÞ j sinðt lnmÞ, mkðlnmÞ j cosðt lnmÞ, k 2 R, j 2 f1; . . . ; ½1

2
K �g,

KZ4, where [1
2
K] is the largest integer r1

2
K, and t 2 Rþ, appearing in

conjugate pairs for each {k, j, t} triple.

Proof. The Euler equation for 01 homogeneity is

XK

k¼1

@akðpÞ
@p>

phkðmÞ þ
XK

k¼1

akðpÞh
0
kðmÞm ¼ 0. (16)

If K ¼ 1 and h01ðmÞ ¼ 0, this reduces to @a1ðpÞ=@p>p ¼ 0, so that h1(m) ¼ c
and a1ðpÞ is 01 homogeneous. Absorb the constant c into the price index
and set k ¼ 0 to obtain a special case of (i).

If either K ¼ 1 and h01ðmÞa0 or KZ2, then neither sum in Eq. (16) can
vanish without contradicting the linear independence of the fakðpÞg or the
fhkðmÞg. In this case, write the Euler equation as

PK
k¼1akðpÞh

0
kðmÞmPK

k¼1 @akðpÞ=@p>p
� �

hkðmÞ
¼ �1.

Since the right-hand side is constant, we must be able to recombine the left-
hand side to be independent of both p and m. In other words, the terms in
the numerator must recombine in some way so that it is proportional to the
denominator, with –1 as the proportionality factor. Clearly, if these two
functions are proportional, their functional forms must be the same. Linear
independence of the {hk(m)} then implies that each h0kðmÞm must be a linear
function of the {hk(m)} with constant coefficients,

h0kðmÞm ¼
XK

‘¼1

ck;‘h‘ðmÞ; k ¼ 1; . . . ;K . (17)

This is a complete system of K linear, homogeneous, ordinary
differential equations (odes), of the form commonly known as Cauchy’s
linear differential equation. To prove the proposition, first we convert
Eq. (17) into a system of linear odes with constant coefficients through a
change of variables from m to x ¼ ln m (Cohen, 1933, pp. 124–125). Then
we identify the complete set of solutions for this new system of odes.
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Since m(x) ¼ ex and mu(x) ¼ m(x), defining ~hkðxÞ � hkðmðxÞÞ; k ¼
1; . . . ;K, and applying this change of variables yields

~h
0

kðxÞ ¼
XK

‘¼1

ck;‘ ~h‘ðxÞ; k ¼ 1; . . . ;K . (18)

In matrix form, this system of linear, first-order, homogeneous odes is
~h
0
ðxÞ � C ~hðxÞ ¼ 0, and the characteristic equation is jC � lI j ¼ 0. This is a

Kth order polynomial in l, for which the fundamental theorem of algebra
(Gauss, 1799) implies that there are exactly K roots. Some of these roots
may repeat and some may be complex conjugate pairs. Let the
characteristic roots be denoted by lk; k ¼ 1; . . . ;K :

By repeated differentiation and substitution of any one of the odes
in Eq. (18), the system of K first-order odes is equivalent to a single linear
homogeneous ode of order K. The general solution to a linear homo-
geneous ode of order K is the sum of K linearly independent particular
solutions (Cohen, 1933, Chapter 6; Boyce and DiPrima, 1977, Chapter 5).8

Let there be RZ0 roots that repeat and reorder the income functions as
necessary in the following way. Label the first repeating root (if one exists) as
l1 and let its multiplicity be denoted by M1Z1. Let the second repeating
root (if one exists) be the M1+1st root. Label this root as l2 and its
multiplicity as M2Z1. Continue in this manner until there are no more
repeating roots. Let the total number of repeated roots be M ¼

PR
k¼1Mk:

Label the remaining K�MZ0 unique roots as lk for each K ¼M+1,y, K.
Then the general solution to Eq. (18) can be written as

~hkðxÞ ¼
XR

r¼1

XMr

‘¼1

dk‘x
ð‘�1Þelrx

" #
þ
XK

‘¼Mþ1

dk‘e
l‘x; k ¼ 1; . . . ;K . (19)

Substitute Eq. (19) into the demand equation for q to obtain

q¼
XK

k¼1

akðpÞ
XR

r¼1

XMr

‘¼1

dk‘m
lr ðlnmÞð‘�1Þ þ

XK

‘¼Mþ1

dk‘m
l‘

" #

¼
XR

r¼1

XMr

‘¼1

XK

k¼1

dk‘akðpÞ

" #
mlr ðlnmÞð‘�1Þ þ

XK

‘¼Mþ1

XK

k¼1

dk‘akðpÞ

" #
ml‘

�
XR

r¼1

XMr

k¼1

~akrðpÞmlr ðlnmÞðk�1Þ þ
XK

k¼Mþ1

~akðpÞmlk :

(20)

8 Here, linear independence of the K functions, { f1,y, fK} of the variable x means that

there is no nonvanishing K-vector, (a1,y, aK) such that a1f 1 þ � � � þ aKf K ¼ 0 for all values

of the variables in an open neighborhood of any point ½x; f 1ðxÞ; . . . ; f K ðxÞ�: Cohen (1933,

pp. 303–306), gives necessary and sufficient conditions for this property.
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The terms in the first double sum generate cases (i) and (ii), and by
de Moivre’s theorem ðe�ix ¼ cosðxÞ � i sinðxÞ 8 x 2 RÞ, case (iv) if KZ4
and a pair of complex conjugate roots repeats. The terms in the sum on the
far right give case (i) for unique real roots and, again by de Moivre’s
theorem, case (iii) for unique pairs of complex conjugate roots. ’

Note that this result on the set of admissible functional forms hinges
entirely on 01 homogeneity – and not on symmetry or adding up. Because
only one demand equation is analyzed, neither symmetry nor adding up
applies to the aforementioned argument. This result is crucial to under-
standing one of the key properties of Gorman systems. It is because of the
multiplicatively separable and additive structure of a Gorman system
defined in terms of nominal income that 01 homogeneity in (p, m) only can
be achieved by multiplication (through power functions) or addition
(through logarithmic functions).

5. The role of adding up

Recalling Eq. (1), applying adding up to a Gorman system implies

m ¼
XK

k¼1

p>akðpÞhkðmÞ ¼
XK

k¼1

akhkðmÞ,

where the fakg
K
k¼1 are absolute constants, independent of (p, m), because the

function on the left is identically m for all p 2 P: Linear independence of the
{hk} therefore implies that one and only one income function is the identity,
hk(m)�m, the associated vector of price functions satisfies p>akðpÞ � 1, and
all other vectors of price functions must satisfy p>a‘ðpÞ � 0; ‘ak. This is a
special case of the restrictions on functional form due to 01 homogeneity. The
reason for this added restriction is that the expenditure function is 11 homo-
geneous in p. This implies both adding up and, by the derivative property of
a 11 homogeneous function, 01 homogeneity of Marshallian demands in
(p, m) and Hicksian demands in p. Since 01 homogeneity is not sufficient for
adding up, one added restriction on the functional forms for the income
terms is implied when adding up is imposed on top of 01 homogeneity.

A final restriction on the functional forms for the income terms is a
consequence of Slutsky symmetry, 01 homogeneity, adding up, and the fact
that demands are real-valued, all taken together. In particular, when
income is raised to a power, the exponent either must be purely real, mk, or
purely complex, mit. To see this, consider a full rank three system that has
been reduced by symmetry to

f 0ðmÞq ¼ a0ðpÞ þ ia1ðpÞ½ � þ b0ðpÞ þ ib1ðpÞ
� �

f ðmÞ

þ c0ðpÞ þ ic1ðpÞ
� �

f ðmÞ2,
(21)
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where a0; a1; b0; b1; c0; c1 : P ! Rn and f ðmÞ ¼ mkþit.9

Because f 0ðmÞ ¼ ðkþ itÞmkþit�1, substitute mkþit for f(m) and
ðkþ itÞmkþit�1 for f u(m) in Eq. (21) and solve for the vector of quantities
demanded to obtain

q ¼
a0ðpÞ þ ia1ðpÞ

kþ it

� �
m1�ðkþitÞ þ

b0ðpÞ þ ib1ðpÞ

kþ it

� �
m

þ
c0ðpÞ þ ic1ðpÞ

kþ it

� �
m1þðkþitÞ.

Applying de Moivre’s theorem then yields

q¼
b0ðpÞþ ib1ðpÞ

kþ it

� �
m

þ
a0ðpÞþ ia1ðpÞ

kþ it

� �
m1�kþ

c0ðpÞþ ic1ðpÞ
kþ it

� �
m1þk

� �
cosðt lnmÞ

þ i
c0ðpÞþ ic1ðpÞ

kþ it

� �
m1þk�

a0ðpÞþ ia1ðpÞ
kþ it

� �
m1�k

� �
sinðtlnmÞ.

(22)

Therefore, for the demands to be real-valued, each vector of price
functions in Eq. (22) must have real elements.

First, this implies b0 þ ib1 ¼ ðkþ itÞb for some b : P ! Rn such that
p>bðpÞ � 1. Second, neither a0 þ ia1 ¼ ðkþ itÞa nor c0 þ ic1 ¼ ðkþ itÞc
can be true for any pair of vector-valued functions, a; c : P! Rn.
Otherwise, the elements in the vector of price functions that premultiplies
sinðt lnmÞ are complex-valued. Therefore, if t 6¼ 0, then k ¼ 0, since
sinðt lnmÞ and cosðt lnmÞ are linearly independent 8 ta0. Conversely, if
k 6¼ 0, then t ¼ 0, since m1�k and m1+k are linearly independent 8 ka0.
Third, if t 6¼ 0 (so that k ¼ 0), then since 1=i ¼ �i and i2 ¼ �1, it follows
that a1 þ c1 � iða0 þ c0Þ and �a0 þ c0 � iða1 � c1Þ must have real elements,
identically in p. This implies c0 ¼ �a0 and c1 ¼ a1, so that

q ¼ ~a0ðpÞmþ ~a1ðpÞm cosðt lnmÞ þ ~a2ðpÞm sinðt lnmÞ,

where ~a0 � b; ~a1 ¼ 2a1=t, and ~a2 ¼ �2a0=t. This is the trigonometric
functional form found by Gorman (1981), for which the indirect utility
function was obtained by Lewbel (1988, 1990). Since the sine and cosine
functions are periodic, with a complete period on the interval [0, 2p], no
loss in generality results from restricting t to be nonnegative. However,

9 It is sufficient to consider full rank three for our purposes since complex roots always appear

as conjugate pairs and the maximum rank of any Gorman system is three. However, Gorman

(1981) shows that this property holds for all rank three systems, including those with reduced

rank and KW3. The argument here can be extended to the reduced rank case through careful

attention to several technical details. It also can be shown that the specification for the

complex-valued vectors of price functions in Eq. (21) is without loss of generality.
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k ¼ 0 is possible in the case of a purely real exponent, and nothing
mathematically precludes either a positive or negative value of k.

Summarizing, the following results have been obtained: (1) the
reduction of any full rank Gorman system to a system of polynomial
partial differential equations that is at most quadratic in f(m) is due to
Slutsky symmetry; (2) the restriction on the functional form of f(m) to
logarithmic and power functions is due to 01 homogeneity; (3) the restric-
tion that one income function is m is due to adding up; and (4) if f(m) is a
power function, then the restriction that the exponent must be purely real
or purely complex is jointly due to symmetry, 01 homogeneity, adding up,
and real-valued demands.

6. Deflated income systems

In response to the functional form restrictions found by Gorman (1981),
Lewbel (1989a) introduced the deflated income Gorman system (hereafter
a Lewbel system),

q ¼
XK

k¼1

akðpÞhkðeðp; uÞ=pðpÞÞ, (23)

with p : Rn
þþ ! Rþþ; p 2 C1, strictly positive-valued, increasing, 11

homogeneous, and weakly concave in p. This structure maintains exact
aggregation in deflated income. That is, the real moments of income can be
used to estimate aggregate demand functions.

To relate Lewbel systems to Gorman systems, first note that adding up
implies

m �
XK

k¼1

p>akðpÞhk m=pðpÞ

 �

.

As a result, linear independence of the {hk} implies that one and only one
must be m/p(p) and the associated vector of price functions must be
@pðpÞ=@p. WLOG, let this be the first one, and bring it to the left-hand side
of Eq. (23) to obtain,

q�
m

pðpÞ
@pðpÞ
@p
¼
XK

k¼2

akðpÞhkðm=pðpÞÞ. (24)

Defining the deflated expenditure function by ~eðp; uÞ � eðp; uÞ=pðpÞ, it
follows that

@ ~eðp; uÞ

@p
¼
XK

k¼2

~akðpÞhkð ~eðp; uÞÞ, (25)

where ~ak � ak=p; k ¼ 2; . . . ;K . This is multiplicatively separable between
p and ~e and has the additive structure of a Gorman system. In this system,
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however, the only issue is symmetry because both 01 homogeneity and
adding up are satisfied as long as the vectors of price functions satisfy
p> ~akðpÞ ¼ 0 and ~akðlpÞ � ~akðpÞ 8l40, 8 k ¼ 2; . . . ;K .

Hence, applying Lie (Hermann, 1975) to a full rank Lewbel system
reduces it to the Ricatti equations in Eq. (6) but now with yðp; uÞ �
f ð ~eðp; uÞÞ, f 2 C1, and f 0ð ~eÞa0. A Lewbel system can achieve rank four and
the restriction on the functional form of f ð ~eÞ now has been eliminated.
These properties are discussed in more detail later.

7. The common structure of Gorman and Lewbel systems

Ricatti partial differential equations of the form Eq. (6) have been studied
extensively in the mathematical theory of differential equations. Recalling
Eq. (15), a key property of all full rank Gorman and Lewbel systems is the
following.

Proposition 2. Let z : Rn
þþ � R! R, y : R! R, and Z : Rn

þþ ! Rþ,
z; y; Z 2 C1, satisfy Eq. (15) with @ZðpÞ=@pa0. Then zðp; uÞ � wðZðpÞ; uÞ,
with w(x, u) satisfying the partial differential equation @wðx; uÞ=@x ¼
yðxÞ þ wðx; uÞ2.

Proof. Differentiate both sides of the system of partial differential
equations,

@zðp; uÞ=@p ¼ yðZðpÞÞ þ zðp; uÞ2
� �

@ZðpÞ=@p,

with respect to p> to obtain,

@2zðp; uÞ

@p@p>
¼ y0ðZðpÞÞ

@ZðpÞ
@p

@ZðpÞ
@p>

þ yðZðpÞÞ þ zðp; uÞ2
� � @2ZðpÞ

@p@p>
þ 2zðp; uÞ

@zðp; uÞ

@p

@ZðpÞ
@p>

.

Hence, ð@z=@pÞ � ð@Z=@pÞ> is symmetric, which implies zðp; uÞ ¼ wðZðpÞ; uÞ
(Goldman and Uzawa, 1964, Lemma 1).

Now differentiate the separable function with respect to p to obtain,

@zðp; uÞ

@p
¼
@wðZðpÞ; uÞ

@Z
�
@ZðpÞ
@p
¼ yðZðpÞÞ þ wðZðpÞ; uÞ2
� � @ZðpÞ

@p
,

which together with @ZðpÞ=@pa0 implies @wðx; uÞ=@x ¼ yðxÞ þ wðx; uÞ2. ’

The formal mathematical definition of w : Rþ � R! R is

wðZðpÞ;uÞ¼
u; if K ¼ 1;2; or K ¼ 3or 4 and y0ðxÞ¼ 0;

uþ
R ZðpÞ
0 ½yðxÞþwðx;uÞ2�dx; if K ¼ 3or 4 and y0ðxÞa0;

(

(26)
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subject to w(0,u)¼ u and @wð0;uÞ=@x¼ yð0Þþu2.10 The function w plays an
important role in the indirect preferences for all Gorman and Lewbel
systems. We can now prove the following result (LaFrance and Pope,
2008a, 2008b).

Proposition 3. Let p : Rn
þþ ! Rþþ, p 2 C1, be strictly positive-valued, 11

homogeneous, increasing, and concave; let Z : Rn
þþ ! Rþ; Z 2 C1; be

positive-valued, 01 homogeneous; let a; b; g; d : Rn
þþ ! C ¼ fxþ iy; x;

y 2 Rg; a; b; g; d 2 C1, be 01 homogeneous, satisfying ad� bg � 1; and let
f : R! C, f 2 C1, f 0a0. Then the expenditure function for any full rank
Gorman or Lewbel system exists if and only if it is a special case of

eðp; uÞ ¼ pðpÞ � f �1
aðpÞwðZðpÞ; uÞ þ bðpÞ
gðpÞwðZðpÞ; uÞ þ dðpÞ

� �
, (27)

where wðZðpÞ; uÞ is defined by Eq. (26).

Proof. First consider sufficiency by differentiating Eq. (27) and applying
Hotelling’s lemma. To make the notation as compact as possible, let a
bold subscript p denote a vector of partial derivatives with respect to
prices, and suppress prices and the utility index as arguments to yield
(after considerable algebra),

@f ð ~eÞ

@p
¼ f 0ð ~eÞ

q

p

� 

�

pp
p

� 

~e

h i
¼ abp � bap þ ða2yþ b2ÞZp
h i

þ bgp � gbp þ dap � adp � 2ðagyþ bdÞZp
h i

f ð ~eÞ

þ gdp � dgp þ ða
2yþ d2ÞZp

h i
f ð ~eÞ2.

(28)

This has precisely the quadratic structure of Eq. (6) with appropriate
definitions for each of the vector-valued price functions. Thus, the
representation given by the proposition generates demand systems that
have the multiplicatively separable and additive structure of Gorman and
Lewbel demand systems.

10 The change of variables wðx; uÞ ¼ �@vðx; uÞ=@x=vðx; uÞ converts the Riccati partial

differential equation in w to a linear second-order differential equation @2vðx; uÞ=@x2þ
yðxÞvðx; uÞ ¼ 0. This requires two initial conditions. The two chosen here are a convenient

normalization for the utility index and guarantee smoothness of w at x ¼ 0 for all u. Linear,

second-order differential equations with non-constant coefficients generally do not have

simple solutions. However, a convergent infinite series of simple functions can be found in

many cases (Boyce and DiPrima, 1977, Chapter 4).

The first line of Eq. (26) is a normalization of the utility index that can be made WLOG

when K ¼ 1, 2 and when K ¼ 3, 4 and y is constant. Note that y 6¼ 0, whether constant or

not, only can occur in a Gorman system if K ¼ 3 and in a Lewbel system if K ¼ 4.
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Next, make the substitution m=p ¼ ~e and rearrange Eq. (28) to solve for
the vector of quantities demanded on the left-hand side to obtain

q ¼ pp �
m

p

� 

þ p abp � bap þ ða2yþ b2ÞZp

h i 1

f 0ðm=pÞ

�

þ bgp � gbp þ dap � adp � 2ðagyþ bdÞZp
h i f ðm=pÞ

f 0ðm=pÞ

þ gdp � dgp þ ða
2yþ d2ÞZp

h i f ðm=pÞ2

f 0ðm=pÞ

�
.

(29)

Note that there are a total of four income terms on the right-hand side of
Eq. (29) with four associated price function vectors and both groups of four
functions can be linearly independent. This implies a maximum rank of four.
But, defining ~m ¼ m=p, whenever f ð ~mÞ 2 fln ~m; ~mk; ~mitg, either f ð ~mÞ=f 0ð ~mÞ
or 1=f 0ð ~mÞ is proportional to ~m. Because the first term on the right is
automatically proportional to ~m, such a choice for f reduces the number of
linearly independent income functions by one, resulting in a maximum rank
of three in a Gorman system. Thus, a Lewbel system has rank equal to one
plus the rank of an otherwise identical Gorman system if and only if
f ð ~mÞefln ~m; ~mk; ~mitg; that is, it is not one of the functional forms found by
Gorman. This shows precisely how rank can increase by one additional
linearly independent vector of price functions and one linearly independent
income function in a Lewbel system. Thus, the rank of any demand system
obtained from the set of expenditure functions defined in the proposition is
at most four for an arbitrary choice for f, and at most three whenever f is
chosen to be a member of the Gorman class of functional forms.

To prove necessity, the representation result for all Gorman systems is
derived first, followed by all Lewbel systems.

7.1. Gorman systems

Full rank one systems can always be written as eðp; uÞ=pðpÞ ¼ u, pðpÞ
positive valued, 11 homogeneous, increasing, and concave due to adding
up and ordinal utility, which together imply that f(m) ¼ m, WLOG.

From the results of Muellbauer (1975, 1976), we know that any
full rank two Gorman system must be a PIGL (i.e., f ðmÞ ¼ mk) or a
PIGLOG (i.e., f(m) ¼ ln m) demand model. For the full rank two PIGL
model, we have

vðp;mÞ ¼
½mk � b1ðpÞ�

b2ðpÞ
,

with b1(p) and b2(p) k1 homogeneous. Rewrite this in terms of deflated
expenditure,

eðp; uÞ

pðpÞ

� �k

¼ uþ bðpÞ,
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with pðpÞ � b2ðpÞ
1=k 11 homogeneous, b(p)�b1(p)/b2(p) 01 homogeneous,

and the implicit definitions a ¼ d ¼ 1 and g ¼ 0 to obtain Eq. (27).
For the full rank two PIGLOG model, we have

vðp;mÞ ¼
½lnm� b1ðpÞ�

b2ðpÞ
,

where b1ðpÞ ¼ ln ~b1ðpÞ, with ~b1ðpÞ 11 homogeneous, b2(p) 01 homogeneous.
Rewrite this in terms of deflated expenditure,

ln
eðp; uÞ
~b1ðpÞ

 !
¼ b2ðpÞu.

Define a ¼
ffiffiffiffiffi
b2

p
, b ¼ g ¼ 0, d ¼ 1=

ffiffiffiffiffi
b2

p
, and p ¼ ~b1 to obtain Eq. (27).

For a full rank three system, three functional forms, f ðmÞ 2
flnm;mk;mitg, and four cases for y must be considered, yðxÞ � l, a
positive, zero, or negative constant, and y0ðxÞa0. When f ðmÞ 2 fmk; lnmg,
k 2 R, and yðxÞ � l, a constant, the van Daal and Merkies (1989) and
Lewbel (1987, 1990) implicit solution for indirect preferences is

Z �b3ðpÞ= f ðeðp;uÞÞ�b1ðpÞ½ � dw

ð1þ lw2Þ
¼ b2ðpÞ þ u. (30)

Six cases of Eq. (30) must be put in the form of the proposition: l40; l ¼
0; and lo0; for each of f ðmÞ ¼ mk and f ðmÞ ¼ lnm.

7.1.1. Extended PIGL

For the extended PIGL11 and l40, use,
Z x

0

ds

ð1þ s2Þ�1
¼ tan�1ðxÞ:

Let l ¼ m240 and s ¼ mw, so that Eq. (30) becomes

Z �b3ðpÞ=½eðp; uÞk�b1ðpÞ� dw

ð1þ m2w2Þ
¼

1

m
tan�1

�mb3ðpÞ
eðp; uÞk � b1ðpÞ

� �

¼ b2ðpÞ þ cðuÞ.

(31)

The functions b1ðpÞ and b3ðpÞ are k1 homogeneous, whereas b2ðpÞ is 01
homogeneous. Define ~b1ðpÞ � b1ðpÞ

1=k and ~b3ðpÞ � b3ðpÞ=b1ðpÞ, so that
~b1ðpÞ is 11 homogeneous, whereas ~b3ðpÞ is 01 homogeneous. Apply the
normalization cðuÞ ¼ m�1tan�1ðuÞ, the rule for the tangent of the sum of

11 Recall that the QES is a special case of the extended PIGL model with k ¼ 1.
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two angles, tanðxþ yÞ ¼ ðtan xþ tan yÞ=ð1� tan x tan yÞ, and the identities
tanðxÞ ¼ sinðxÞ= cosðxÞ, and tanð�xÞ ¼ � tanðxÞ to rewrite Eq. (31) as

�m ~b3ðpÞ

½eðp; uÞ= ~b1ðpÞ�
k � 1

¼
cos mb2ðpÞ
� �

� uþ sin mb2ðpÞ
� �

� sin mb2ðpÞ
� �

� uþ cos mb2ðpÞ
� � . (32)

Rearrange terms to obtain

e

~b1

 !k

¼
cosðmb2Þ þ m ~b3 sinðmb2Þ
� �

� uþ sinðmb2Þ � m ~b3 cosðmb2Þ
� �

cosðmb2Þ � uþ sinðmb2Þ
.

(33)

For these implied definitions of fa; b; g; dg, we have ad� bg ¼ m ~b3.
Therefore, define fa;b; g; d;pg as follows:

pðpÞ ¼ ~b1ðpÞ;

aðpÞ ¼
cosðmb2ðpÞÞ þ m ~b3ðpÞ sinðmb2ðpÞÞ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m ~b3ðpÞ

q ;

bðpÞ ¼
sinðmb2ðpÞÞ � m ~b3ðpÞ cosðmb2ðpÞÞ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m ~b3ðpÞ

q ;

gðpÞ ¼
cosðmb2ðpÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi

m ~b3ðpÞ
q ;

dðpÞ ¼
sinðmb2ðpÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi

m ~b3ðpÞ
q .

Since ~b1 is 11 homogeneous, while b2; ~b3 are 01 homogeneous, p is 11
homogeneous, a;b; g; d are 01 homogeneous, ad� bg ¼ 1, and Eq. (33) is
equivalent to

eðp; uÞ

pðpÞ

� �k

¼
aðpÞ � uþ bðpÞ
gðpÞ � uþ dðpÞ

. (34)

Note that the new definitions for fa;b; g; dg simply rescale these price
indices with no change in the indirect preferences or the demand equations.
The normalization for the utility index, that is, the arbitrary constant of
integration, also can be freely chosen in any way that is most convenient.
These properties are exploited as necessary in each of the remaining cases.

For the case where l ¼ 0,

Z �b3ðpÞ=½eðp; uÞk�b1ðpÞ�
dw ¼

�b3ðpÞ
eðp; uÞk � b1ðpÞ

¼ b2ðpÞ þ cðuÞ.
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Define ~b1ðpÞ and ~b3ðpÞ in the same way as aforementioned, apply the
normalization cðuÞ ¼ u, and rearrange terms to obtain,

eðp; uÞ
~b1ðpÞ

 !k

¼
uþ b2ðpÞ � ~b3ðpÞ

uþ b2ðpÞ
.

For these implied definitions of fa;b; g; dg, that is, a ¼ g ¼ 1; b ¼ b2 � ~b3,
and d ¼ b2; we have ad� bg ¼ ~b3: Therefore, define fa;b; g; d;pg as follows:

pðpÞ ¼ ~b1ðpÞ;

aðpÞ ¼ gðpÞ ¼ 1
. ffiffiffiffiffiffiffiffiffiffiffi

~b3ðpÞ
q

;

bðpÞ ¼
b2ðpÞ � ~b3ðpÞ
� �

ffiffiffiffiffiffiffiffiffiffiffi
~b3ðpÞ

q ;

dðpÞ ¼
b2ðpÞffiffiffiffiffiffiffiffiffiffiffi
~b3ðpÞ

q .

Then we again obtain Eq. (34).
Next, let l ¼ �m2o0 in Eq. (30), so that
Z �b3ðpÞ=½eðp; uÞk�b1ðpÞ� dw

ð1� m2w2Þ
¼

1

2m
ln

eðp; uÞk � b1ðpÞ � mb3ðpÞ
eðp; uÞk � b1ðpÞ þ mb3ðpÞ

� �

¼ b2ðpÞ þ cðuÞ.

Define ~b1ðpÞ and ~b3ðpÞ in the same way as in the previous two cases and
apply the normalization cðuÞ ¼ lnðuÞ=2m to rewrite this as

eðp; uÞ= ~b1ðpÞ
� �k

� 1� m ~b3ðpÞ

eðp; uÞ= ~b1ðpÞ
� �k

� 1þ m ~b3ðpÞ
¼ e2mb2ðpÞ � u.

Rearranging terms yields

eðp; uÞ
~b1ðpÞ

 !k

¼
½1� m ~b3ðpÞ�e

2mb2ðpÞ � u� ½1þ m ~b3ðpÞ�
e2mb2ðpÞ � u� 1

. (35)

For these implied definitions of fa;b; g; dg, we have ad� bg ¼ 2m ~b3e
2mb2 .

Therefore, define fa;b; g; d;pg as follows:

pðpÞ ¼ ~b1ðpÞ;

aðpÞ ¼
½1� m ~b3ðpÞ�e

mb2ðpÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m ~b3ðpÞ

q ;

bðpÞ ¼
�½1þ m ~b3ðpÞ�e

�m ~b2ðpÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m ~b3ðpÞ

q ;
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gðpÞ ¼
emb2ðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m ~b3ðpÞ

q ;

dðpÞ ¼ �
e�m

~b2ðpÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m ~b3ðpÞ

q .

Then we once again obtain Eq. (34).

7.1.2. Extended PIGLOG

The same three cases for l apply to the extended PIGLOG, except that
ln m replaces mk everywhere, b1ðpÞ ¼ ln ~b1ðpÞ with ~b1ðpÞ 11 homogeneous,
and both b2ðpÞ and b3ðpÞ are 01 homogeneous.

When l ¼ m240, Eq. (31) becomes

Z �b3ðpÞ= ln½eðp; uÞ= ~b1ðpÞ� dw

ð1þ m2w2Þ
¼

1

m
tan�1

�mb3ðpÞ

ln½eðp; uÞ= ~b1ðpÞ�

( )

¼ b2ðpÞ þ cðuÞ.

Applying the same trigonometric rules and the normalization cðuÞ ¼
m�1tan�1ðuÞ, this can be rewritten as

�mb3ðpÞ

ln½eðp; uÞ= ~b1ðpÞ�
¼

cos mb2ðpÞ
� �

� uþ sin mb2ðpÞ
� �

� sin mb2ðpÞ
� �

� uþ cos mb2ðpÞ
� � ,

Rearranging terms yields

ln
eðp; uÞ
~b1ðpÞ

 !
¼ mb3ðpÞ

sin mb2ðpÞ
� �

� u� cos mb2ðpÞ
� �

cos mb2ðpÞ
� �

� uþ sin mb2ðpÞ
� �

 !
.

For these implicit definitions for fa;b; g; dg, we have ad� bg ¼ mb3.
Therefore, define fa;b; g; d;pg as follows:

pðpÞ ¼ ~b1ðpÞ;

aðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mb3ðpÞ

p
sin mb2ðpÞ

 �

;

bðpÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m ~b3ðpÞ

q
cos mb2ðpÞ

 �

;

gðpÞ ¼
cos mb2ðpÞ

 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m ~b3ðpÞ

q ;

dðpÞ ¼
sin mb2ðpÞ

 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m ~b3ðpÞ

q .
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Then we have

ln
eðp; uÞ

pðpÞ

� �
¼

aðpÞ � uþ bðpÞ
gðpÞ � uþ dðpÞ

, (36)

with p 11 homogeneous, a; b; g; d 01 homogeneous, and ad� bg ¼ 1.
Similarly, if l ¼ 0, then

Z �b3ðpÞ= ln½eðp; uÞ= ~b1ðpÞ�
dw ¼

�b3ðpÞ

ln½eðp; uÞ= ~b1ðpÞ�
¼ b2ðpÞ þ cðuÞ.

Apply the normalization c(u) ¼ u and rearrange terms to obtain

ln
eðp; uÞ
~b1ðpÞ

 !
¼
�b3ðpÞ
uþ b2ðpÞ

.

For these definitions for fa;b; g; dg, that is, a ¼ 0; b ¼ �b3; g ¼ 1; and d ¼
b2; we have ad� bg ¼ b3: Therefore, define fa; b; g; d;pg as follows:

pðpÞ ¼ ~b1ðpÞ;

aðpÞ ¼ 0;

bðpÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
b3ðpÞ

p
;

gðpÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
b3ðpÞ

p ;

dðpÞ ¼
b2ðpÞffiffiffiffiffiffiffiffiffiffiffi
b3ðpÞ

p .

Then we have Eq. (36), p 11 homogeneous, a; b; g; d 01 homogeneous, and
ad� bg ¼ 1.

Finally, if l ¼ �m2o0, then

Z �b3ðpÞ= ln½eðp; uÞ= ~b1ðpÞ� dw

ð1� m2w2Þ
¼

1

2m
ln

ln½eðp; uÞ=b1ðpÞ� � mb3ðpÞ
ln½eðp; uÞ=b1ðpÞ� þ mb3ðpÞ

� �

¼ b2ðpÞ þ cðuÞ.

Apply the normalization cðuÞ ¼ lnðuÞ=2m to rewrite this as

ln½eðp; uÞ=b1ðpÞ� � mb3ðpÞ
ln½eðp; uÞ=b1ðpÞ� þ mb3ðpÞ

¼ eb2ðpÞ � u.

Rearranging terms, this is equivalent to

ln
eðp; uÞ
~b1ðpÞ

 !
¼ mb3ðpÞ

eb2ðpÞ � uþ 1

�eb2ðpÞ � uþ 1

� �
.
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For these implied definitions for fa;b; g; dg, we have ad� bg ¼ 2mb3e
b2 .

Hence, define fa;b; g; d;pg as follows:

pðpÞ ¼ ~b1ðpÞ;

aðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mb3ðpÞ

2

r
� e

1
2b2ðpÞ;

bðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mb3ðpÞ

2

r
� e�

1
2b2ðpÞ;

gðpÞ ¼ �
e
1
2b2ðpÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mb3ðpÞ

p ;

dðpÞ ¼
e�

1
2b2ðpÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mb3ðpÞ

p .

Then we have Eq. (36), p 11 homogeneous, a; b; g; d 01 homogeneous, and
ad� bg ¼ 1.

This completes the proof of necessity for the extended PIGL and
PIGLOG models for a constant yðxÞ � l. For the extended PIGL and
PIGLOG models with y0ðb3ðpÞÞa0, write

wðb3ðpÞ; uÞ ¼
f ðeðp; uÞÞ � b1ðpÞ

b2ðpÞ
, (37)

with wðb3ðpÞ; uÞ defined in the second line of Eq. (26) and b3ðpÞ ¼ ZðpÞ.
If f ðmÞ ¼ mk, then rewrite Eq. (37) as

eðp; uÞ
~b2ðpÞ

 !k

¼ wðb3ðpÞ; uÞ þ ~b1ðpÞ,

where ~b2 ¼ b1=k2 is 11 homogeneous and ~b1 ¼ b1=b2 is 01 homogeneous.
The implied definitions of fa;b; g; d;pg are a ¼ d ¼ 1; b ¼ � ~b1; g ¼ 0, and
p ¼ ~b2.

Similarly, if f ðmÞ ¼ lnm, then rewrite Eq. (37) as

ln
eðp; uÞ
~b1ðpÞ

 !
¼ b2ðpÞ � wðb3ðpÞ; uÞ,

where b1 ¼ ln ~b1 and ~b1 is 11 homogeneous. The definitions of fa; b; g; d; pg
that lead to the representation given in the proposition are a ¼

ffiffiffiffiffi
b2

p
,

b ¼ g ¼ 0, d ¼ 1=
ffiffiffiffiffi
b2

p
, and p ¼ ~b1. This completes the proof of necessity

for all full rank three extended PIGL or PIGLOG demand systems.
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7.1.3. Trigonometric

The only remaining case for a full rank three Gorman system is the
trigonometric indirect utility function found by Lewbel (1988, 1990),

vðp;mÞ ¼ b2ðpÞ þ
b3ðpÞ cos t lnðm=b1ðpÞÞ

� �

1� sin t lnðm=b1ðpÞÞ
� �� � , (38)

with b1 11 homogeneous and b2;b3 01 homogeneous. Apply the definitions
of and rules for calculating sums and differences of sine and cosine
functions (e.g., Abramowitz and Stegun, 1972, pp. 71–74), to rewrite
Eq. (38) as

vðp;mÞ ¼
b3ðpÞ � ib2ðpÞ
� �

� ½m=b1ðpÞ�
it þ b2ðpÞ � ib3ðpÞ

1� i½m=b1ðpÞ�
it . (39)

To obtain the representation in the proposition, appropriate transforma-
tions of income and the price indices must be found. Set vðp;mÞ ¼ u and
m ¼ eðp; uÞ and invert Eq. (39) to yield,

eðp; uÞ

b1ðpÞ

� �it

¼
u� b2ðpÞ þ i � b3ðpÞ

i � uþ b3ðpÞ � i � b2ðpÞ
.

For the implied definitions of fa; b; g; dg, we have ad� bg ¼ 2b3ðpÞ.
Therefore, define fa;b; g; d;pg as follows:

pðpÞ ¼ b1ðpÞ;

aðpÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2b3ðpÞ
p ;

bðpÞ ¼
�b2ðpÞ þ i � b3ðpÞ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2b3ðpÞ

p ;

gðpÞ ¼
iffiffiffiffiffiffiffiffiffiffiffiffiffi

2b3ðpÞ
p ;

dðpÞ ¼
b3ðpÞ � i � b2ðpÞ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2b3ðpÞ

p .

This yields

eðp; uÞ

pðpÞ

� �it

¼
aðpÞ � uþ bðpÞ
gðpÞ � uþ dðpÞ

,

with p 11 homogeneous, a;b; g; d 01 homogeneous, and ad� bg ¼ 1, as
required.

Thus, all full rank Gorman systems can be written in the form given in
the proposition. It is worth emphasizing that in each case, fa; b; g; d; Zg
depend on at most two linearly independent price indices. It also is
important to note that the Gorman functional forms are responsible for
the property that one 11 homogeneous price index can be extracted to
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deflate income. This is the fundamental role of the Gorman functional
forms in a nominal income Gorman system.

Now turn to the proof of necessity for all Lewbel systems.

7.2. Lewbel systems

Recall Eq. (12),

@ ~e

@p
¼
XK

k¼2

~akðpÞhkð ~eÞ.

K ¼ 1 repeats the homothetic, full rank one case, and does not require
additional proof. If KZ2, then linear independence of the fh2; . . . ; hKg
implies that at least one of these functions cannot vanish. WLOG, let it be
h2 and define the map y ¼ f ð ~eÞ by

yðp; uÞ ¼ f ð ~eðp; uÞÞ ¼

Z ~eðp; uÞ dx

h2ðxÞ
.

Then by Leibnitz’ rule, we have

@yðp; uÞ

@p
¼

1

h2ð ~eðp; uÞÞ
�

1

pðpÞ
q� ~eðp; uÞ

@pðpÞ
@p

� �

¼ ~a2ðpÞ þ
XK

k¼3

~akðpÞ
hkð ~eðp; uÞÞ

h2ð ~eðp; uÞÞ

¼ ~a2ðpÞ þ
XK

k¼3

~akðpÞ ~hkð ~eðp; uÞÞ,

where ~hkð ~eðp; uÞÞ ¼ hkð ~eðp; uÞÞ=h2ð ~eðp; uÞÞ; k ¼ 3; . . . ;K. Since h2ðxÞa0,
f �1ðyÞ exists, so that

@yðp; uÞ=@p ¼ ~a2ðpÞ þ
X4

k¼3

~akðpÞĥkðyðp; uÞÞ, (40)

where ĥkðyðp; uÞÞ � ~hkðf
�1
ðyðp; uÞÞÞ, ĥk : R! R, ĥk 2 C1; k ¼ 3; . . . ;K .

These steps reduce the demand system to one in which the first income
term on the right-hand side is the constant function, that is, ~h2ðyÞ � 1,
maintaining the additive structure of Gorman, but now with multiplicative
separability between p and y, rather than p and ~e.

From the results of Lewbel (1989a) and Lie (Hermann, 1975), we know
that Kr4 in any full Lewbel rank system. Hence, all solutions to Eq. (40)
for K ¼ 2, 3, 4 must be found. To simplify the notational burden, drop all
of the Bs and ŝ and rewrite Eq. (40) as

@yðp; uÞ

@p
¼ a2ðpÞ þ

XK

k¼3

akðpÞhkðyðp; uÞÞ:

K ¼ 2 : @yðp; uÞ=@p ¼ a2ðpÞ:

(41)
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This implies @2y=@p@p> ¼ @a2=@p>, so that @a2=@p> is symmetric. This is
necessary and sufficient for the existence of a 01 homogeneous function,
b : Rn

þ ! R; b 2 C1, such that @bðpÞ=@p ¼ a2ðpÞ. Integrating Eq. (41) then
yields

yðp; uÞ ¼ uþ bðpÞ,

with an obvious normalization for u. The implied definitions a ¼ d ¼ 1 and
g ¼ 0 yield the representation given in the proposition.

K ¼ 3 :
@yðp; uÞ

@p
¼ a2ðpÞ þ a3ðpÞh3ðyðp; uÞÞ.

This implies

@2y

@p@p>
¼
@a2
@p>
þ
@a3
@p>

h3 þ a3a
>
2 h
0
3 þ a3a

>
3 h3h

0
3

¼
@a>2
@p
þ
@a>3
@p

h3 þ a2a
>
3 h
0
3 þ a3a

>
3 h3h

0
3.

Subtracting the far right expression from the middle one implies,

ða3a
>
2 � a2a

>
3 Þh
0
3 ¼

@a>2
@p
�
@a2
@p>

� �
þ

@a>3
@p
�
@a3
@p>

� �
h3. (42)

Since fa2; a3g are linearly independent, a3aca2 for any c 2 R. Hence,
a3a
>
2 is not symmetric. Since f1; h3ðyÞg are linearly independent, h03a0.

Premultiply Eq. (42) by a>3 , postmultiply by a2, and divide by a>3 a3a
>
2 a2 �

ða>3 a2Þ
240 (by the Cauchy–Schwartz inequality) to obtain

h03ðyÞ ¼ c1 þ c2h3ðyÞ, (43)

where c1 and c2 are absolute constants since h3ðyÞ and h03ðyÞ are
independent of p. In other words, the solution to this differential equation,
which is h3ðyÞ by definition, is not a function of prices.

If c2a0, the solution to this linear, first-order, ode is h3ðyÞ ¼ �ðc1=c2Þþ
c3e

c2y, where c3 is a constant of integration. Plugging this into Eq. (42) then
implies that the n� n matrix equation,

ða3a
>
2 � a2a

>
3 Þc2c3e

c2y ¼
@a>2
@p
�
@a2
@p>

� �
þ

@a>3
@p
�
@a3
@p>

� �
�

c1

c2

� �
þ c3e

c2y

� �
,

holds identically in (p, y). But this implies that c3¼ 0, which contradicts the
linear independence of f1;h3ðyÞg ¼ f1;�ðc1=c2Þ þ c3e

c2yg.
Therefore, it must be that c2 ¼ 0 and the complete solution to Eq. (43) is

h3ðyÞ ¼ c1yþ b for some constant of integration b. WLOG, absorb the
constants c1 and b into a2ðpÞ and a3ðpÞ by linear transformations, tacitly
normalizing so that h2ðyÞ ¼ 1 and h3ðyÞ ¼ y, which are linearly
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independent. The system of demand equations then is

@yðp; uÞ

@p
¼ a2ðpÞ þ a3ðpÞyðp; uÞ. (44)

As a result, symmetry reduces to

@2y

@p@p>
¼
@a2
@p>
þ a3a

>
2 þ

@a3
@p>
þ a3a

>
3

� �
y¼

@a>2
@p
þ a2a

>
3 þ

@a>3
@p
þ a3a

>
3

� �
y.

Equating like powers in y, @a3=@p> is symmetric. This is necessary and
sufficient for a 01 homogeneous function, j : Rn

þ ! R, to exist such that
@jðpÞ=@p¼ a3ðpÞ. Substituting this into Eq. (44) yields

@yðp;uÞ

@p
¼ a2ðpÞ þ

@jðpÞ
@p

yðp;uÞ (45)

Symmetry now reduces to

@a2
@p>
þ
@j
@p

a>2 ¼
@a>2
@p
þ a2

@j
@p>

,

which implies that @a2=@p> � a2 @j=@p>is symmetric.
Therefore, applying the integrating factor e�j to Eq. (45) yields

@

@p
yðp; uÞe�jðpÞ
� �

¼
@yðp; uÞ

@p
� yðp; uÞ

@jðpÞ
@p

� �
e�jðpÞ ¼ a2ðpÞe

�jðpÞ.

Differentiating this with respect to p> then implies

@2

@p@p>
yðp; uÞe�jðpÞ
� �

¼
@a2ðpÞ

@p>
� a2ðpÞ

@jðpÞ
@p>

� �
e�jðpÞ.

Symmetry of the n� n matrix on the right-hand side implies that a 01
homogeneous function, q : P ! R, exists such that @rðpÞ=@p ¼ a2ðpÞe

�jðpÞ

and

yðp; uÞe�jðpÞ ¼ uþ rðpÞ,

with an obvious normalization for u. Solve this for y(p, u) and define
aðpÞ ¼ e

1
2jðpÞ, bðpÞ ¼ e

1
2jðpÞrðpÞ, gðpÞ ¼ 0, and dðpÞ ¼ e�

1
2jðpÞ to obtain the

representation given by the proposition.

K ¼ 4 :
@yðp; uÞ

@p
¼ a2ðpÞ þ a3ðpÞh3ðyðp; uÞÞ þ a4ðpÞh4ðyðp; uÞÞ .

We have

@2y

@pi@pj
¼
@ai2
@pj
þ
X4

k¼3

@aik
@pj

hk þ
X4

k¼3

aikh
0
k aj2 þ

X4

‘¼3

aj‘h‘

 !

¼
@aj2
@pi
þ
X4

k¼3

@ajk
@pi

hk þ
X4

k¼3

ajkh
0
k ai2 þ

X4

‘¼3

ai‘h‘

 !
¼

@2y

@pj@pi
; 8 iaj.
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Rewrite this in terms of 1
2
n(n–1) vanishing differences,

0 ¼
@ai2
@pj
�
@aj2
@pi
þ

@ai3
@pj
�
@aj3
@pi

 !
h3 þ

@ai4
@pj
�
@aj4
@pi

 !
h4

þ ðai3aj2 � ai2aj3Þh
0
3 þ ðai4aj2 � ai2aj4Þh

0
4

þ
X4

k¼3

X4

‘¼3

aikaj‘ðh
0
kh‘ � hkh

0
‘Þ; 8 joi ¼ 2; . . . ; n.

If k ¼ ‘ in the double sum, then aikajk is multiplied by h0khk � hkh
0
k ¼ 0,

whereas if ka‘, then h0kh‘ � hkh
0
‘ is multiplied once by aikaj‘ and �ai‘ajk.

Thus,

0 ¼
@ai2
@pj
�
@aj2
@pi
þ

@ai3
@pj
�
@aj3
@pi

 !
h3

þ
@ai4
@pj
�
@aj4
@pi

 !
h4 þ ðai3aj2 � ai2aj3Þh

0
3 þ ðai4aj2 � ai2aj4Þh

0
4

þ ðai4aj3 � ai3aj4Þðh
0
3h4 � h3h

0
4Þ; 8 joi ¼ 2; . . . ; n.

Now define the matrices

B¼

a23a12� a22a13 a24a12� a22a14 a24a13� a23a14
a33a12� a32a13 a34a12� a32a14 a34a13� a33a14

..

. ..
. ..

.

an;3an�1;2� an;2an�1;3 an;4an�1;2� an;2an�13 an;4an�1;3� an�1;3an;4

2
666664

3
777775
,

C ¼

@a22
@p2
�
@a12
@p1

@a23
@p2
�
@a13
@p1

@a24
@p2
�
@a14
@p1

..

. ..
. ..

.

@an;2
@pn�1

�
@an�1;2
@pn

@an;3
@pn�1

�
@an�1;3
@pn

@an;4
@pn�1

�
@an�1;4
@pn

2
6666664

3
7777775
,

and the vectors h¼ ½1 h3 h4�
> and ~h¼ ½h03 h04 h03h4� h3h

0
4�
> (recall that

h2ðyÞ � 1, so that h02ðyÞ � 0 and h0jðyÞh2ðyÞ � h0jðyÞ; j¼ 3; 4). B is
1
2
nðn� 1Þ� 3, C is 1

2
nðn� 1Þ� 3, h is 3�1, and ~h is 3�1. As before,

symmetry can be written in compact matrix notation as B ~h¼Ch.
Premultiply both sides by B> to obtain B>B ~h¼B>Ch. The 3�3 matrix
B>B is symmetric, positive definite, so that ~h¼ ðB>BÞ�1B>Ch�Dh.

The vectors ~h and h depend on y but not on p, whereas the matrix D
can only depend on p and not on y. It follows that all of the elements of
D must be constants independent of p and y. That is, the solution to
this constrained system of odes can only be a function of y and not p.
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The implications of symmetry on the income functions can now be
written as,

h03ðyÞ ¼ d11 þ d12h3ðyÞ þ d13h4ðyÞ,

h04ðyÞ ¼ d21 þ d22h3ðyÞ þ d23h4ðyÞ,

h3ðyÞh
0
4ðyÞ � h03ðyÞh4ðyÞ ¼ d31 þ d32h3ðyÞ þ d33h4ðyÞ,

(46)

where the {dij} are constants that cannot all be zero in any given equation
(again, by full rank of the demand system). The first two equations form
a complete system of linear odes with constant coefficients. This system is
constrained by the third equation, which restricts the {dij}.

To solve this system of odes, differentiate the first equation and
substitute out h04ðyÞ and then h4ðyÞ,

h003ðyÞ ¼ d12h
0
3ðyÞ þ d13h

0
4ðyÞ

¼ d12h
0
3ðyÞ þ d13 d21 þ d22h3ðyÞ þ d23h4ðyÞ½ �

¼ d13d21 þ d12h
0
3ðyÞ þ d13d22h3ðyÞ þ d23 h03ðyÞ � d11 � d12h3ðyÞ

� �

¼ d13d21 � d22d11 þ ðd11 þ d22Þh
0
3ðyÞ þ ðd13d22 � d23d12Þh3ðyÞ.

The homogeneous part is,

h003ðyÞ � ðd11 þ d22Þh
0
3ðyÞ � ðd13d22 � d23d12Þh3ðyÞ ¼ 0,

with characteristic equation,

l2 � ðd11 þ d22Þl� ðd13d22 � d23d12Þ ¼ 0,

and characteristic roots

l ¼
1

2
d11 þ d12 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd11 þ d12Þ

2
þ 4ðd13d22 � d23d12Þ

q� �
.

If l ¼ 0 is the only root, then the complete solution is

h3ðyÞ ¼ a1 þ b1yþ c1y
2,

h4ðyÞ ¼ a2 þ b2yþ c2y
2.

We prove that this is the only possibility.
With distinct non-vanishing roots, the complete solution for the odes is

h3ðyÞ ¼ a1 þ b1e
l1y þ c1e

l2y,

h4ðyÞ ¼ a2 þ b2e
l1y þ c2e

l2y.

The second income function, h2ðyÞ � 1, hence, WLOG set h3ðyÞ ¼ el1y

and h4ðyÞ ¼ el2y by the linear independence of f1; el1y; el2yg; 8 l1al2a0.

The Generalized Quadratic Expenditure System 111



The equation for h3h
0
4 � h03h4 then is

ðl2 � l1Þeðl1þl2Þy ¼ d31 þ d32e
l1y þ d33e

l2y,

where l2 � l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd11 þ d12Þ

2
þ 4ðd13d22 � d23d12Þ

q
a0 and l1 þ l2 ¼

d11 þ d12al1al2, a contradiction of the linear independence of
f1; el1y; el2y; eðl1þl2Þyg 8 ðl1; l2Það0; 0Þ.

Hence, the characteristic roots must be equal, l ¼ 1
2
ðd11 þ d12Þ. If la0,

then the complete solution is

h3ðyÞ ¼ a1 þ b1e
ly þ c1ye

ly,

h4ðyÞ ¼ a2 þ b2e
ly þ c2ye

ly.

Set h3ðyÞ ¼ ely and h4ðyÞ ¼ yely, WLOG, by the linear independence of
f1; ely; yelyg 8 la0. Then the equation for h3h

0
4 � h03h4 is

e2ly ¼ d31 þ d32e
ly þ d33ye

ly,

which is a contradiction of the linear independence of f1; ely; yely; e2lyg
8 la0.

Hence, only a repeated vanishing root is possible and

@y

@p
¼ a2 þ a3yþ a4y

2,

again, where yðp; uÞ ¼ f ð ~eðp; uÞÞ. This has exactly the same form as a
nominal income full rank QES. Consequently, the symmetry argument of
van Daal and Merkies (1989) applies in tact, which implies

@

@p

f ð ~eðp; uÞÞ � b1ðpÞ
b2ðpÞ

� �
¼ yðb3ðpÞÞ þ

f ð ~eðp; uÞÞ � b1ðpÞ
b2ðpÞ

� �2
" #

@b3ðpÞ
@p

,

for some b1;b2;b3 : R
n
þþ ! R, and some y : R! R. As before, the change

of variables to zðp; uÞ ¼ ½ f ð ~eðp; uÞÞ � b1ðpÞ�=b2ðpÞ reduces this further to

@zðp; uÞ

@p
¼ yðb3ðpÞÞ þ zðp; uÞ2
� � @b3ðpÞ

@p
.

which leads again to the separable function wðb3ðpÞ; uÞ defined in Eq. (26).
Hence, the solution for indirect preferences of all full rank Lewbel systems
is precisely the same as that obtained for all full rank Gorman systems, but
with no restriction on the functional form for f ð ~eÞ. ’

Thus, every Gorman and Lewbel demand system is a special case of a
generalized quadratic expenditure system (GQES). It is useful to emphasize
that, in all full rank Lewbel systems, fa; b; g; d; Zg will depend on no more
than three linearly independent, 01 homogeneous price indices, implying
that the maximum rank is four.

In general, the rank and structure of a GQES depends on choices
for the function f, the price indices fa;b; g; d; Z; pg, and the function y.
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Given specific choices for up to three (four) price indices in a Gorman
(Lewbel) system, the function f, and when K ¼ 3 (K ¼ 4) the function y
(or equivalently, the implicit function w), the demand system and
associated indirect preferences are completely specified without any need
to ever revisit integrability.12 This complete characterization accommo-
dates the calculation of exact welfare measures, both in the aggregate and
for specific consumer groups of interest, as well as many other valuations
that are typically of interest in applied research. It is worth emphasizing
the fundamental implication of this result: The ‘‘only relevant difference’’
between a full rank Gorman and a Lewbel system is the choice of functional
form for f.

8. Conclusions

Common reasons for the choice of functional form for demand analysis
include parsimony, ease of estimation and interpretation, generality,
flexibility, aggregation, and consistency with economic theory. Since
the path-breaking papers of Gorman, flexibility and aggregation have
guided much of the development and application of applied demand
analysis. The rank of Engel curves is a central feature of this research.
It is a routine practice to impose the theoretical properties associated
with Slutsky symmetry and negativity, homogeneity, and adding up. This
chapter shows how to construct any GQES demand system, without
the need to revisit questions of integrability of the demand equations
or the structure and functional form of the implied indirect preference
functions.
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