INFERRING THE NUTRIENT CONTENT OF FOOD
WITH PRIOR INFORMATION

JEFFREY T. LAFRANCE

U.S. farm and food policy is being trans-
formed. Direct cash payments and a move-
ment toward a more open market is replacing
many farm-level price and income support
programs. Welfare; food stamps; Women, In-
fants and Children; Aid to Families with De-
pendent Children; and school lunch programs
are being reduced in scope at the federal level
and replaced by block grants to states. All of
these changes will influence prices and quan-
tities consumed of foods, and therefore the
nutritional intake of U.S. consumers. But it is
unclear what the overall nutritional effects of
these policy changes might be. Food stamps
provide direct in-kind subsidies for food con-
sumption, with the goal of increasing the nu-
tritional status of the poor. In contrast, federal
milk marketing orders increase the price of
fresh milk and lower the prices of manufac-
tured dairy products, creating incentives to
substitute away from fresh milk and toward
butter and cheese. Other farm-level policies
also create consumer incentives at odds with
those created by food subsidy programs.'
Though food aid recipients spend more on
food, they eat less healthy foods due to price
distortions. Other consumers, who pay the
taxes needed to finance farm and food pro-
grams, have lower disposable incomes, food
expenditures, and nutritional intakes. For this
group, policy-induced price distortions also
create incentives for less healthy diets.

A central focus of much research on farm
and food policy on consumer choice and nu-
trition has been an effort to establish the eco-
nomic links between food consumption choic-
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! Target prices, deficiency payments, and nonrecourse loans in-
crease supplies of feed grains, lower market prices of feed, and
increase supplies and lower retail prices of red meat, which is high
in cholesterol. Marketing orders and agreements for many fruits, nuts,
and vegetables contain regulations that lead to higher prices for fresh
products and lower prices for manufactured products, which are less
nutritious and contain relatively large amounts of salt (Jamison).
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es and nutrition. Suppose we have a stable,
theoretically consistent reduced-form model
of the demand for foods, which might be writ-
ten in the form E(x|p,, p,, m, s) = h*(p,, p,,
m, s), where X is the n -vector of foods, p, is
the corresponding vector of market prices, p,
is the vector of market prices for all other
goods, m is disposable income, and s is a vec-
tor of demographic variables and other de-
mand shifters.? It is known that weak inte-
grability of the subset of demands is necessary
and sufficient for virtually all economically
relevant analyses, including exact welfare
measurement of the effects of farm and food
policies (LaFrance and Hanemann).

Given measurements on the nutrient con-
tent matrix transforming foods into nutrients,
say z = Ax, where z is the K-vector of nu-
trients consumed and A is the K X n, matrix
of nutrient contents per unit of foods, we also
can analyze policy effects on nutritional in-
takes with the above demand model. This fol-
lows because the conditional mean for nutri-
ents, given prices, income, demographics and
other demand shifters, and A satisfies E(z|p,,
p,. m, s, A) = Ah*(p,, p,, m, s). Nutrient
demand price elasticities satisfy €; = 3,
w;€,, where € = (p,/z;)-9z,/dp, is the price
elasticity of the ith nutrient with respect to the
kth price, €, = (p,/x;) - 9x//3p, is the price elas-
ticity of the jth food with respect to the kth
price, and w;; = a;;x;/z; is the share of the ith
nutrient supplied by the jth food as one ex-
ample. The matrix A is the rub, however.
Year-to-year measures of the nutritional con-
tent of disaggregated food items are neither
published by the USDA nor readily available
from other sources.

About ten years ago, with assistance from
Nancy Raper of the Human Nutrition Infor-
mation Service (HNIS) and by using unpub-
lished handwritten documents, I compiled an-

* See, e.g., LaFrance for one example of this type of empirical
model.
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—— Data Set, 1952-1983
---- Predicted, 1909-1994
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Figure 1. Energy per pound of food

nual estimates of the percentages of seventeen
nutrients (energy, protein, fat, carbohydrates,
and cholesterol; calcium, iron, magnesium,
phosphorous, and zinc; vitamins A, B, B,
C, and E; and niacin, riboflavin, and thiamin)
supplied by twenty-one foods (fresh milk and
cream, butter, cheese, ice cream and frozen
yogurt, and canned and powdered milk; beef,
pork, other red meat, fish, and poultry; fresh
citrus fruits, fresh noncitrus fruits, fresh veg-
etables, potatoes and sweet potatoes, pro-
cessed fruits, and processed vegetables; and
fats and oils excluding butter, eggs, cereals
and bakery products, sugar and sweeteners,
and coffee, tea, and cocoa) for the period
1952-83. Each of these percentages was mul-
tiplied by the total supply of the correspond-
ing nutrient and divided by the per capita con-
sumption of the corresponding food to gen-
erate year-to-year estimates of the nutrient
content per pound of each food—for example,
grams of protein per pound of beef. These
percentage contribution estimates were re-
corded with only two or three significant dig-
its, suggesting a fair amount of measurement
error. Even so, only small changes in the el-
ements of the nutrient content matrices oc-
curred between 1952—-83. The two solid lines
in figure 1 illustrate the time paths over this
period for the energy content of butter and
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pork. These two food items had far and away
the greatest variation in their estimated energy
contents over the sample period.

Another problem in estimating the nutrient
content of aggregate food items is that, at least
until the present, obtaining updated or back
dated disaggregated nutrient content estimates
has proven to be untenable. As a consequence,
in previous work I calculated the average nu-
trient content matrix over the thirty-two-year
period as a first guess for the nutritional con-
tent of the U.S. food supply. This has obvious
problems, especially in light of recent policy
and research emphases on nutritional report-
ing, health education, and improved diets, not
to mention the simple fact that a hog seventy-
five years ago was a very different creature
than the typical barrow or gilt of today.

This leads to the main focus of this paper.
Suppose we wished to make inferences about
the likely values of a number of unknown
quantities based on a single data point. This
is an impossible task using classical statistical
methods, unless one is willing to live with
infinite uncertainty about the precision of the
estimates obtained. But, if a source of rea-
sonable prior information exists, such infer-
ence problems can be addressed readily with
Bayesian methods. This situation describes
quite precisely the nutrient content question I
want to address. I have annual observations
on the total disappearance of twenty-one
foods from the U.S. food supply and the total
availability of seventeen nutrients from those
foods for the period 1909-94. I also have a
sample of estimates for the individual nutri-
tional content of each of these food items for
the period 1952-83. However, the food quan-
tity and nutrient availability data has been up-
dated several times by the USDA since the
sample of thirty-two observations was origi-
nally constructed. Hence, the nutrient content
estimates obtained from the extraneous sam-
ple are not entirely consistent with the avail-
able data on total annual food and nutrient
consumption. But it is reasonable to think that
the shorter thirty-two-year data set can be
used to draw inferences about the joint be-
havior of the elements of the nutrient content
matrix over time. Given this ““post data’ in-
formation, which we will assume has the form
of a prior distribution, the longer, incomplete,
data set can be used to make year-to-year fore-
casts to draw inferences on the reasonably
likely range of values for the elements of the
nutrient matrix. The primary question, then,
is how “‘best” to proceed. In this paper, I out-
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line one possible strategy and apply it to es-
timating the year-to-year energy content of
food commodities in the United States food
supply over the period 1909-94.

Inferring the Nutrient Content of the
U.S. Food Supply

My initial point of departure is an ingenious
approach to ill-posed inference problems
known as generalized maximum entropy de-
veloped recently by Golan; Golan, Judge, and
Miller; and Golan, Judge, and Perloff. Al-
though I ultimately pursue a somewhat dif-
ferent strategy for reasons that should become
clear below, it is useful to briefly summarize
this approach as it relates to the present prob-
lem.

Consider the problem of estimating the nu-
tritional content of food items in a given year
from aggregate per capita disappearance data
and estimates of the total nutrients available
in the food supply. Let z, € RX be the K-
vector of nutrients available for consumption
per capita in the food supply in year ¢, let x,
€ R be the n, -vector of food quantities con-
sumed per capita, and write the linear rela-
tionship between food and nutrients as
(1 z,=Ax, t=1,...,T
where A, is a K X n, matrix of positive pa-
rameters to be estimated in each year. Suppose
that we have an average estimate of the nu-
trient content matrix, say A°, obtained inde-
pendently of the current inference problem.
But we do not have data on the nutrient con-
tent matrices on a year-to-year basis. Let’s
focus on the case of a single nutrient to sim-
plify the discussion, specifically, the energy
content of foods, and omit the time subscripts
whenever this is not confusing. The inference
problem is to find a vector, a = 0 satisfying
z = a'x, given a prior estimate of the nutrient
content vector, a°, and observations on z and
x. We first specify a compact interval of sup-
port for each «; containing the prior estimate,
o € [a;, @), i =1, ..., K, divide each in-
terval into N subintervals, each having the
form
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and write the «,’s as weighted averages of the
N + 1 endpoints,

N-1 1\_
(2) a; = apyt (T)Ef + (17)0‘:’ Pyt -
1 N-—-1\_
+ I_V— o; + T Q;(Pin-
N
+&pw = 2 [a, + GIK®]p,,
j=0
i=1,...,K
where 8/ = & — o; Vi, p; = 0 V i, j and

3¥, p; = 1. The GME choice for a solves

ny N
(3) max — Y, > p;log(p;)
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2. [a; + (j/K)Si]pijxi =z

i=1 j=0

This is a straightforward constrained opti-
mization problem with a strictly concave ob-
jective function and linear constraints, and a
unique solution is guaranteed to exist. More-
over, the logarithmic transformation strictly
bounds the solution away from zero, so the
nonnegativity constraints are slack at the op-
timal solution. The GME solution can be writ-
ten in the form

@ p;= PioexXp{—A8,;x;(j/N)},
Vj=0,...,N
Vi=1,...,n,

with the normalizing condition

N
(5) po=1 E exp{—\8,x,(j/N)}

which ensures that the probabilities add up to
one for each i. Finally, the optimal posterior
choices for the «,’s are the means of the pos-
terior discrete probability distributions,
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exp{—A3,x;(j/IN)}
Zexp{ NS GIN)}

(6)

e 5L

while the Lagrange multiplier for the mean
constraint is defined by

exp{—A\d,x;(j/IN)}
2 exp{—\3,x,(k/N)}

M Sxfa, E()

This approach always produces a well-de-
fined, unique answer to even highly ill-posed
inference problems, including the present one.
However, the GME algorithm raises some is-
sues, at least for this application. First, what
form does the prior information really take?
In the standard GME solution, the choice for
the compact support for the coefficients often
seems to be a subjective judgment that is not
necessarily truly prior information. However,
with regard to the nutritional content of foods,
we do know (with probability one) that any
given food item cannot account for less than
zero nor more than 100% of a given nutrient’s
total availability. This gives us a natural
choice for the support of the elements of a.
But without looking at any data, I have no
other prior knowledge about the percentage
of the total energy available in the U.S. food
supply that comes from beef, for example.
While this level of ignorance is not inconsis-
tent with the standard GME assumption of a
discrete equally likely (i.e., uniform) prior, the
proper post-data distribution for the elements
of o may not, and in most cases will not, be
uniform.

A second issue is that each choice for the
discrete number of subintervals, N, generates
a different solution for the optimal probability
weights and therefore for the elements of a.
One way to overcome this subjectivity is to
let N = o and use a continuous density func-
tion for both the prior and the posterior. This
is useful for another reason. If we consider
the GME solution formally as minimizing the
Kullback-Leibler cross entropy criterion func-
tion relative to a uniform prior, then the in-
direct objective function has the form —3¥,
p¥ln(p¥) + In(N + 1), where p¥ is the optimal
choice for the ith probability weight. Artifi-
cially considering N as a continuous variable,

Inferring Nutrient Content 731
the envelope theorem implies that the optimal
entropy level is strictly increasing in N, and
that the slope (i.e., the rate of increase) de-
creases at the rate 1/(N + 1)?, and an asymp-
totic approximation should become accurate
rapidly.

To derive the GME approach’s limiting dis-
tribution, for s € [0, 1] let [sN] be the largest
integer no larger than sN and for each i = 0,

, N, define p(s) = p,;- For given i, N,
and 0 = j = N, let s satisfy jIN=s < (j +
1)/N. Then, uniformly in s € [0, 1], the ith
cumulative probability distribution function
satisfies

1/N)exp{—\3,x,(k/N)}

[sN]

2(
(8) F(s)=%

2 (1/N)exp{ —\3,x,(k/N)}

[sN1/IN
= (f exp{—Ad,x,([uN]/N)} du)
0
1
- (J’ exp{—Nd,x;([uN]/N)} du
0

+ (1/N)exp{—Adx; })

j exp{—A\d,x,u} du

0

- 1
i f exp{—A\d;x;s} ds
0

1 — ex&,-x,-s

_1 — e M\dix;

which is a truncated exponential cumulative
distribution function, with the limiting value
of the Lagrange multiplier defined by the
mean condition

ny 1
@ A2, J. se b ds/(1 — e = z.
i=1 0

It is straightforward to verify, using methods
from optimal control theory, that this distri-
bution is the continuous GME solution (e.g.,
Golan, Judge, and Miller, p. 40). Finding the
continuous GME posterior leads naturally to
the question, what are appropriate choices for
a pre-data prior distribution, a post-data pos-
terior distribution, which becomes the pre-
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Table 1. Sample Moments for the Energy Content of U.S. Foods, 1952-83

Mean Standard
Food Item (Calories/Pound) Error
Fresh milk and cream 279.853 2.27135
Butter 3193.76 21.3308
Cheese 1290.95 8.86004
Ice cream and frozen yogurt 683.073 22.0997
Canned and powdered milk 869.336 15.7867
Beef and veal 1029.37 5.88297
Pork 1925.22 25.4956
Other red meat 822.742 8.22912
Fish 887.037 10.9005
Poultry 630.447 8.17579
Fresh citrus fruit 104.220 2.39075
Fresh noncitrus fruit 247.969 2.03088
Fresh vegetables 199.849 3.69462
Potatoes and sweet potatoes 326.975 2.71337
Processed fruit 218.810 4.38049
Processed vegetables 691.288 4.52930
Fats and oils, excluding butter 3754.19 8.39000
Eggs 866.313 22.7001
Cereals and bakery products 1682.45 4.87875
Sugar and sweeteners 1636.86 3.90332

forecast prior distribution, and a loss func-
tion?

I began this process ignorant of all of these
matters, except perhaps for a small amount of
introspection regarding the logical support for
the unknown nutrient content quantities. In
addition, visual inspection of figure 1 (and
similar plots for the other nutrients) suggests
that the short but complete data set for the
years 1952-83 does not contain very much
information about a systematic structure be-
yond perhaps the first and second moments of
the underlying distribution. However, based
on the work of Csiszar, Gokhale and Kullback,
Jaynes (1957a, 1957b, and 1984), Kullback,
and Shannon, the Kullback-Leibler cross-en-
tropy function seems a logical choice for the
criterion function. Since the GME solution is
equivalent to minimizing the Kullback-Lei-
bler cross-entropy function relative to a uni-
form prior (Golan, Judge, and Perloff; Gok-
hale and Kullback), this choice remains log-
ically consistent with GME. However, al-
though I am comfortable with uniform priors
on compact intervals before undertaking any
data analysis, the Kullback-Leibler criterion
can be applied to any post-data prior.

The one thing I remain reticent to impose
is a specific assumption about the likelihood
function for the shorter, complete data set.
Given this, a particularly attractive method is
the Bayesian Method of Moments (BMOM),

which yields post-data densities for model pa-
rameters without an assumed likelihood func-
tion (Tobias and Zellner; Zellner; and Zellner,
Tobias, and Ryu). In particular, it is known
that the proper maximum entropy density giv-
en first and second moments is a multivariate
normal density (see, e.g., Zellner, Tobias, and
Ryu). We obtain sample estimates for the
mean vector and variance-covariance matrix
by applying the method of moments to the
thirty-two-year data set. In this instance, this
gives a post-data density of the form

(10) f(a|D) ~ N(&, %i)

where & is the n,-vector of sample means and
is the n, X n, matrix of sample variance-
covariance terms. To illustrate, table 1 pre-
sents the sample means and estimated stan-
dard errors of the means for the energy content
of foods for the sample period 1953-82.
Thus, for the post-data inference problem,
we assume a multivariate normal density
function as the prior distribution for each
year’s observations on total food and nutrient
quantities available in the food supply,®

* In actuality, the compact support for the elements of the nutrient
content vector implies a truncated multivariate normal distribution,
However, given the sample estimates, the probability of being on or
outside the boundary was always on the order of 10 or smaller, so
I ignored it.
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1 -1/2
(1) folw= (2«1)-":'2\;?\
X exp{—'—z'(a —&)3 (- a)}.

For the Kullback-Leibler criterion, the objec-
tive is to

(12)  minimize f f JiMlogLfi(y)/fo(¥)]

X dy, - - - dyy,
subject to
"'ffl(y)dyl dny =1,
N,
gxi f infl(Y) dy, -+ dny =2z

Using techniques from optimal control theory,
it can be shown that the optimal choice for
fi(a) also is multivariate normal with an up-
dated mean and the same covariance matrix,

-1/2

a3 fi@=@mel 8|

X exp{—%(a -a)3 a- le)}

(14) a,=4a+ (x'fx)“ix(z - x'&).

We end up with a very simple least squares
rule as the solution to what started out as a
difficult and highly ill-posed inference prob-
lem. I find this quite delightful! The dashed
lines in figure 1 display the mean calculations
for the energy content of butter and pork in
each year in the period 1909-94. This pro-
cedure indeed appears to generate reasonable
predictions.

Conclusions

The BMOM and GME solution to the nutrient
inference problem produces the same alge-
braic result as the following classical ap-
proach. We first use least squares to estimate
the sample means and variance-covariance
terms. We then take these sample estimates to
be the “‘true’” parameter values and calculate
a single generalized least squares step in each
year to minimize the distance between & and
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o, relative to the quadratic norm Y, 3. But
there is a significant difference in both the
interpretation and the logic behind these ap-
proaches. In finite samples, the Bayesian and
classical solutions only coincide when the
likelihood function is multivariate normal,
and this is known a priori. Other likelihood
functions generate different results. In addi-
tion, the Bayesian method provides a logical
basis for inference on the year-to-year distri-
butions of the nutrient content elements.
These distributions could be used to calculate
standard errors or confidence intervals for
such things as the price elasticities of nutrient
consumption to obtain reasonable bounds for
the changes in nutritional intakes to changes
in farm and food policy.
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